Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jan;34(1):98–102. doi: 10.1128/jcm.34.1.98-102.1996

Molecular technique for rapid identification of mycobacteria.

E Avaniss-Aghajani 1, K Jones 1, A Holtzman 1, T Aronson 1, N Glover 1, M Boian 1, S Froman 1, C F Brunk 1
PMCID: PMC228739  PMID: 8748282

Abstract

Identification of mycobacteria through conventional microbiological methods is cumbersome and time-consuming. Recently we have developed a novel bacterial identification method to accurately and rapidly identify different mycobacteria directly from water and clinical isolates. The method utilizes the PCR to amplify a portion of the small subunit rRNA from mycobacteria. The 5' PCR primer has a fluorescent label to allow detection of the amplified product. The PCR product is digested with restriction endonucleases, and an automated DNA sequencer is employed to determine the size of the labeled restriction fragments. Since the PCR product is labeled only at the 5' end, the analysis identifies only the restriction fragment proximal to the 5' end. Each mycobacterial species has a unique 5' restriction fragment length for each specific endonuclease. However, frequently the 5' restriction fragments from different species have similar or identical lengths for a given endonuclease. A set of judiciously chosen restriction enzymes produces a unique set of fragments for each species, providing us with an identification signature. Using this method, we produced a library of 5' restriction fragment sizes corresponding to different clinically important mycobacteria. We have characterized mycobacterial isolates which had been previously identified by biochemical test and/or nucleic acid probes. An analysis of these data demonstrates that this protocol is effective in identifying 13 different mycobacterial species accurately. This protocol has the potential of rapidly (less than 36 h) identifying mycobacterial species directly from clinical specimens. In addition, this protocol is accurate, sensitive, and capable of identifying multiple organisms in a single sample.

Full Text

The Full Text of this article is available as a PDF (243.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avaniss-Aghajani E., Jones K., Chapman D., Brunk C. A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques. 1994 Jul;17(1):144-6, 148-9. [PubMed] [Google Scholar]
  2. Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol. 1990 Aug;28(8):1751–1759. doi: 10.1128/jcm.28.8.1751-1759.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davis T. E., Fuller D. D. Direct identification of bacterial isolates in blood cultures by using a DNA probe. J Clin Microbiol. 1991 Oct;29(10):2193–2196. doi: 10.1128/jcm.29.10.2193-2196.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hermans P. W., Schuitema A. R., Van Soolingen D., Verstynen C. P., Bik E. M., Thole J. E., Kolk A. H., van Embden J. D. Specific detection of Mycobacterium tuberculosis complex strains by polymerase chain reaction. J Clin Microbiol. 1990 Jun;28(6):1204–1213. doi: 10.1128/jcm.28.6.1204-1213.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Iseman M. D. Mycobacterium avium complex and the normal host: the other side of the coin. N Engl J Med. 1989 Sep 28;321(13):896–898. doi: 10.1056/NEJM198909283211310. [DOI] [PubMed] [Google Scholar]
  6. Kirschner P., Springer B., Vogel U., Meier A., Wrede A., Kiekenbeck M., Bange F. C., Böttger E. C. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol. 1993 Nov;31(11):2882–2889. doi: 10.1128/jcm.31.11.2882-2889.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Larsen N., Olsen G. J., Maidak B. L., McCaughey M. J., Overbeek R., Macke T. J., Marsh T. L., Woese C. R. The ribosomal database project. Nucleic Acids Res. 1993 Jul 1;21(13):3021–3023. doi: 10.1093/nar/21.13.3021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rogall T., Flohr T., Böttger E. C. Differentiation of Mycobacterium species by direct sequencing of amplified DNA. J Gen Microbiol. 1990 Sep;136(9):1915–1920. doi: 10.1099/00221287-136-9-1915. [DOI] [PubMed] [Google Scholar]
  9. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol. 1993 Feb;31(2):175–178. doi: 10.1128/jcm.31.2.175-178.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Versalovic J., Woods C. R., Jr, Georghiou P. R., Hamill R. J., Lupski J. R. DNA-based identification and epidemiologic typing of bacterial pathogens. Arch Pathol Lab Med. 1993 Nov;117(11):1088–1098. [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES