Abstract
Approximately 75% of coagulase-negative staphylococci are resistant to methicillin, but it is suspected that even more resistance exists that is not detected by standard susceptibility assays. To determine the most accurate assay for measuring resistance, we compared the detection of mecA by PCR with detection by National Committee for Clinical Laboratory Standards methods using oxacillin as the class drug. Strains from 11 species of coagulase-negative staphylococci were selected such that 84% were susceptible by the broth microdilution method. Of 45 mecA-positive strains, 1 strain was unable to express the mecA gene product after induction and was not included in further analyses. For microdilution with 2% NaCl, the disk test without salt, and agar screen containing 4% NaCl plus-6 micrograms of oxacillin per ml, the sensitivities in detecting the 44 mecA-positive strains were 50, 84, and 70%, respectively, at 24 h and 77, 82, and 100%, respectively, at 48 h. The specificities of microdilution, disk, and agar screen in detecting the 97 strains lacking mecA were 100, 89, and 100%, respectively, at 24 h. Only the disk test proved to be less specific at 48 h (81%). Furthermore, for 10 of the mecA-positive strains plus an additional 8 strains subsequently added to the analyses, the MICs were 2 micrograms/ml at 24 h by the broth microdilution method; all 18 strains were positive for mecA by PCR. Thus, an oxacillin MIC of > or = 2 micrograms/ml indicated resistance and is probably a more appropriate breakpoint than the current National Committee for Clinical Laboratory Standards breakpoint of 4 micrograms/ml for coagulase-negative staphylococci. Strains for which MICs are < 2 micrograms/ml may be methicillin resistant and should be verified as susceptible by oxacillin agar screening with incubation for 48 h.
Full Text
The Full Text of this article is available as a PDF (196.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer G. L., Pennell E. Detection of methicillin resistance in staphylococci by using a DNA probe. Antimicrob Agents Chemother. 1990 Sep;34(9):1720–1724. doi: 10.1128/aac.34.9.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brakstad O. G., Maeland J. A., Tveten Y. Multiplex polymerase chain reaction for detection of genes for Staphylococcus aureus thermonuclease and methicillin resistance and correlation with oxacillin resistance. APMIS. 1993 Sep;101(9):681–688. doi: 10.1111/j.1699-0463.1993.tb00165.x. [DOI] [PubMed] [Google Scholar]
- Chambers H. F. Detection of methicillin-resistant staphylococci. Infect Dis Clin North Am. 1993 Jun;7(2):425–433. [PubMed] [Google Scholar]
- Fass R. J., Helsel V. L., Barnishan J., Ayers L. W. In vitro susceptibilities of four species of coagulase-negative staphylococci. Antimicrob Agents Chemother. 1986 Oct;30(4):545–552. doi: 10.1128/aac.30.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geha D. J., Uhl J. R., Gustaferro C. A., Persing D. H. Multiplex PCR for identification of methicillin-resistant staphylococci in the clinical laboratory. J Clin Microbiol. 1994 Jul;32(7):1768–1772. doi: 10.1128/jcm.32.7.1768-1772.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hedin G., Löfdahl S. Detecting methicillin-resistant Staphylococcus epidermidis--disc diffusion, broth breakpoint or polymerase chain reaction? APMIS. 1993 Apr;101(4):311–318. doi: 10.1111/j.1699-0463.1993.tb00116.x. [DOI] [PubMed] [Google Scholar]
- Huang M. B., Gay T. E., Baker C. N., Banerjee S. N., Tenover F. C. Two percent sodium chloride is required for susceptibility testing of staphylococci with oxacillin when using agar-based dilution methods. J Clin Microbiol. 1993 Oct;31(10):2683–2688. doi: 10.1128/jcm.31.10.2683-2688.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellogg J. A., Garver C. G. Improved detection of beta-lactamase activity in isolates of Staphylococcus saprophyticus with the use of a modified Cefinase disk procedure. Am J Clin Pathol. 1989 Mar;91(3):319–322. doi: 10.1093/ajcp/91.3.319. [DOI] [PubMed] [Google Scholar]
- Kloos W. E., Bannerman T. L. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev. 1994 Jan;7(1):117–140. doi: 10.1128/cmr.7.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald C. L., Maher W. E., Fass R. J. Revised interpretation of oxacillin MICs for Staphylococcus epidermidis based on mecA detection. Antimicrob Agents Chemother. 1995 Apr;39(4):982–984. doi: 10.1128/aac.39.4.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami K., Minamide W., Wada K., Nakamura E., Teraoka H., Watanabe S. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J Clin Microbiol. 1991 Oct;29(10):2240–2244. doi: 10.1128/jcm.29.10.2240-2244.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsson-Liljequist B., Larsson P., Ringertz S., Löfdahl S. Use of a DNA hybridization method to verify results of screening for methicillin resistance in staphylococci. Eur J Clin Microbiol Infect Dis. 1993 Jul;12(7):527–533. doi: 10.1007/BF01970958. [DOI] [PubMed] [Google Scholar]
- Pierre J., Williamson R., Bornet M., Gutmann L. Presence of an additional penicillin-binding protein in methicillin-resistant Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus simulans with a low affinity for methicillin, cephalothin, and cefamandole. Antimicrob Agents Chemother. 1990 Sep;34(9):1691–1694. doi: 10.1128/aac.34.9.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Predari S. C., Ligozzi M., Fontana R. Genotypic identification of methicillin-resistant coagulase-negative staphylococci by polymerase chain reaction. Antimicrob Agents Chemother. 1991 Dec;35(12):2568–2573. doi: 10.1128/aac.35.12.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryffel C., Kayser F. H., Berger-Bächi B. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob Agents Chemother. 1992 Jan;36(1):25–31. doi: 10.1128/aac.36.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stratton C. W., Gelfand M. S., Gerberding J. L., Chambers H. F. Characterization of mechanisms of resistance to beta-lactam antibiotics in methicillin-resistant strains of Staphylococcus saprophyticus. Antimicrob Agents Chemother. 1990 Sep;34(9):1780–1782. doi: 10.1128/aac.34.9.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki E., Hiramatsu K., Yokota T. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob Agents Chemother. 1992 Feb;36(2):429–434. doi: 10.1128/aac.36.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ubukata K., Nakagami S., Nitta A., Yamane A., Kawakami S., Sugiura M., Konno M. Rapid detection of the mecA gene in methicillin-resistant staphylococci by enzymatic detection of polymerase chain reaction products. J Clin Microbiol. 1992 Jul;30(7):1728–1733. doi: 10.1128/jcm.30.7.1728-1733.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ubukata K., Nonoguchi R., Song M. D., Matsuhashi M., Konno M. Homology of mecA gene in methicillin-resistant Staphylococcus haemolyticus and Staphylococcus simulans to that of Staphylococcus aureus. Antimicrob Agents Chemother. 1990 Jan;34(1):170–172. doi: 10.1128/aac.34.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unal S., Hoskins J., Flokowitsch J. E., Wu C. Y., Preston D. A., Skatrud P. L. Detection of methicillin-resistant staphylococci by using the polymerase chain reaction. J Clin Microbiol. 1992 Jul;30(7):1685–1691. doi: 10.1128/jcm.30.7.1685-1691.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods G. L., Hall G. S., Rutherford I., Pratt K. J., Knapp C. C. Detection of methicillin-resistant Staphylococcus epidermidis. J Clin Microbiol. 1986 Sep;24(3):349–352. doi: 10.1128/jcm.24.3.349-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]