Abstract
We have investigated the use of DNA amplification by PCR for the detection of mycobacteria in clinical specimens, with the gene encoding the 16S rRNA as a target. Following generic amplification of mycobacterial nucleic acids, screening was done with genus-specific probe; this was followed by species differentiation by use of highly discriminating probes or nucleic acid sequencing. In a prospective 18-month evaluation, criteria to select specimens for PCR analysis were defined. Of a total of 8,272 specimens received, 729 samples satisfied the criteria and were subjected to DNA amplification. Clinical specimens included material from the respiratory tract (sputa and bronchial washings), aspirates, biopsies, and various body fluids (cerebrospinal, pleural, peritoneal, and gastric fluids). After resolution of discrepant results, the sensitivity of the PCR assay was 84.5%, the specificity was 99.5%, the positive predictive value was 97.6%, and the negative predictive value was 96.4%. The sensitivity and negative predictive value of culture (with a combination of broth and solid media) were 77.5 and 94.8%, respectively. In conclusion, this PCR assay provides an efficient strategy to detect and identify multiple mycobacterial species and performs well in comparison with culture.
Full Text
The Full Text of this article is available as a PDF (213.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe C., Hirano K., Wada M., Kazumi Y., Takahashi M., Fukasawa Y., Yoshimura T., Miyagi C., Goto S. Detection of Mycobacterium tuberculosis in clinical specimens by polymerase chain reaction and Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test. J Clin Microbiol. 1993 Dec;31(12):3270–3274. doi: 10.1128/jcm.31.12.3270-3274.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bange F. C., Vogel U., Flohr T., Kiekenbeck M., Denecke B., Böttger E. C. IFP 35 is an interferon-induced leucine zipper protein that undergoes interferon-regulated cellular redistribution. J Biol Chem. 1994 Jan 14;269(2):1091–1098. [PubMed] [Google Scholar]
- Bodmer T., Gurtner A., Schopfer K., Matter L. Screening of respiratory tract specimens for the presence of Mycobacterium tuberculosis by using the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test. J Clin Microbiol. 1994 Jun;32(6):1483–1487. doi: 10.1128/jcm.32.6.1483-1487.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brisson-Noel A., Aznar C., Chureau C., Nguyen S., Pierre C., Bartoli M., Bonete R., Pialoux G., Gicquel B., Garrigue G. Diagnosis of tuberculosis by DNA amplification in clinical practice evaluation. Lancet. 1991 Aug 10;338(8763):364–366. doi: 10.1016/0140-6736(91)90492-8. [DOI] [PubMed] [Google Scholar]
- Butler W. R., O'Connor S. P., Yakrus M. A., Smithwick R. W., Plikaytis B. B., Moss C. W., Floyd M. M., Woodley C. L., Kilburn J. O., Vadney F. S. Mycobacterium celatum sp. nov. Int J Syst Bacteriol. 1993 Jul;43(3):539–548. doi: 10.1099/00207713-43-3-539. [DOI] [PubMed] [Google Scholar]
- Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol. 1990 Aug;28(8):1751–1759. doi: 10.1128/jcm.28.8.1751-1759.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böttger E. C. Mycobacterium genavense: an emerging pathogen. Eur J Clin Microbiol Infect Dis. 1994 Nov;13(11):932–936. doi: 10.1007/BF02111494. [DOI] [PubMed] [Google Scholar]
- Böttger E. C., Teske A., Kirschner P., Bost S., Chang H. R., Beer V., Hirschel B. Disseminated "Mycobacterium genavense" infection in patients with AIDS. Lancet. 1992 Jul 11;340(8811):76–80. doi: 10.1016/0140-6736(92)90397-l. [DOI] [PubMed] [Google Scholar]
- Clarridge J. E., 3rd, Shawar R. M., Shinnick T. M., Plikaytis B. B. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol. 1993 Aug;31(8):2049–2056. doi: 10.1128/jcm.31.8.2049-2056.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990 May;161(5):977–981. doi: 10.1093/infdis/161.5.977. [DOI] [PubMed] [Google Scholar]
- Emler S., Rochat T., Rohner P., Perrot C., Auckenthaler R., Perrin L., Hirschel B. Chronic destructive lung disease associated with a novel mycobacterium. Am J Respir Crit Care Med. 1994 Jul;150(1):261–265. doi: 10.1164/ajrccm.150.1.8025761. [DOI] [PubMed] [Google Scholar]
- Forbes B. A., Hicks K. E. Direct detection of Mycobacterium tuberculosis in respiratory specimens in a clinical laboratory by polymerase chain reaction. J Clin Microbiol. 1993 Jul;31(7):1688–1694. doi: 10.1128/jcm.31.7.1688-1694.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heifets L., Mor N., Vanderkolk J. Mycobacterium avium strains resistant to clarithromycin and azithromycin. Antimicrob Agents Chemother. 1993 Nov;37(11):2364–2370. doi: 10.1128/aac.37.11.2364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horsburgh C. R., Jr Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991 May 9;324(19):1332–1338. doi: 10.1056/NEJM199105093241906. [DOI] [PubMed] [Google Scholar]
- Jalava T., Lehtovaara P., Kallio A., Ranki M., Söderlund H. Quantification of hepatitis B virus DNA by competitive amplification and hybridization on microplates. Biotechniques. 1993 Jul;15(1):134–139. [PubMed] [Google Scholar]
- Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol. 1993 Sep;31(9):2410–2416. doi: 10.1128/jcm.31.9.2410-2416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschner P., Springer B., Vogel U., Meier A., Wrede A., Kiekenbeck M., Bange F. C., Böttger E. C. Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. J Clin Microbiol. 1993 Nov;31(11):2882–2889. doi: 10.1128/jcm.31.11.2882-2889.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolk A. H., Schuitema A. R., Kuijper S., van Leeuwen J., Hermans P. W., van Embden J. D., Hartskeerl R. A. Detection of Mycobacterium tuberculosis in clinical samples by using polymerase chain reaction and a nonradioactive detection system. J Clin Microbiol. 1992 Oct;30(10):2567–2575. doi: 10.1128/jcm.30.10.2567-2575.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
- Lüneberg E., Jensen J. S., Frosch M. Detection of Mycoplasma pneumoniae by polymerase chain reaction and nonradioactive hybridization in microtiter plates. J Clin Microbiol. 1993 May;31(5):1088–1094. doi: 10.1128/jcm.31.5.1088-1094.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller N., Hernandez S. G., Cleary T. J. Evaluation of Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test and PCR for direct detection of Mycobacterium tuberculosis in clinical specimens. J Clin Microbiol. 1994 Feb;32(2):393–397. doi: 10.1128/jcm.32.2.393-397.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolte F. S., Metchock B., McGowan J. E., Jr, Edwards A., Okwumabua O., Thurmond C., Mitchell P. S., Plikaytis B., Shinnick T. Direct detection of Mycobacterium tuberculosis in sputum by polymerase chain reaction and DNA hybridization. J Clin Microbiol. 1993 Jul;31(7):1777–1782. doi: 10.1128/jcm.31.7.1777-1782.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noordhoek G. T., Kolk A. H., Bjune G., Catty D., Dale J. W., Fine P. E., Godfrey-Faussett P., Cho S. N., Shinnick T., Svenson S. B. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol. 1994 Feb;32(2):277–284. doi: 10.1128/jcm.32.2.277-284.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfyffer G. E., Kissling P., Wirth R., Weber R. Direct detection of Mycobacterium tuberculosis complex in respiratory specimens by a target-amplified test system. J Clin Microbiol. 1994 Apr;32(4):918–923. doi: 10.1128/jcm.32.4.918-923.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prince A. M., Andrus L. PCR: how to kill unwanted DNA. Biotechniques. 1992 Mar;12(3):358–360. [PubMed] [Google Scholar]
- Rys P. N., Persing D. H. Preventing false positives: quantitative evaluation of three protocols for inactivation of polymerase chain reaction amplification products. J Clin Microbiol. 1993 Sep;31(9):2356–2360. doi: 10.1128/jcm.31.9.2356-2360.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Springer B., Kirschner P., Rost-Meyer G., Schröder K. H., Kroppenstedt R. M., Böttger E. C. Mycobacterium interjectum, a new species isolated from a patient with chronic lymphadenitis. J Clin Microbiol. 1993 Dec;31(12):3083–3089. doi: 10.1128/jcm.31.12.3083-3089.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne L. G., Sramek H. A. Agents of newly recognized or infrequently encountered mycobacterial diseases. Clin Microbiol Rev. 1992 Jan;5(1):1–25. doi: 10.1128/cmr.5.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]