Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Mar;34(3):564–568. doi: 10.1128/jcm.34.3.564-568.1996

Molecular epidemiology of Klebsiella pneumoniae producing SHV-5 beta- lactamase: parallel outbreaks due to multiple plasmid transfer.

W M Prodinger 1, M Fille 1, A Bauernfeind 1, I Stemplinger 1, S Amann 1, B Pfausler 1, C Lass-Florl 1, M P Dierich 1
PMCID: PMC228847  PMID: 8904415

Abstract

Over a period of 22 months, 32 patients treated in three independent intensive care units of the Innsbruck University Hospital were infected with extended-spectrum beta-lactamase-producing members of the family Enterobacteriaceae (30 Klebsiella pneumoniae isolates, 1 Klebsiella oxytoca isolate, and 1 Escherichia coli isolate). As confirmed by sequencing of a bla gene PCR fragment, all isolates expressed the SHV-5-type beta-lactamase. Genomic fingerprinting of epidemic strains with XbaI and pulsed-field gel electrophoresis grouped 20 of 21 isolates from ward A into two consecutive clusters which included 1 of 3 ward B isolates. All six K. pneumoniae isolates from ward C formed a third cluster. Stool isolates of asymptomatic patients and environmental isolates belonged to these clusters as well. Additionally, 2,600 routine K. pneumoniae isolates from the surrounding provinces (population, 900,000) were screened for SHV-5 production. Only one of six nonepidemic isolates producing SHV-5 beta-lactamase was matched with the outbreak strains by genomic fingerprinting. Plasmid fingerprinting, however, revealed the epidemic spread of a predominant R-plasmid, with a size of approximately 80 kb, associated with 29 of the 30 K. pneumoniae isolates. This plasmid was also present in the single K. oxytoca and E. coli isolates from ward C and in three nonepidemic isolates producing SHV-5. Our results underline that strain typing exclusively on the genomic level can be misleading in the epidemiological investigation of plasmid-encoded extended-spectrum beta-lactamases. Our evidence for multiple events of R-plasmid transfer between species of the family Enterobacteriaceae in this nosocomial outbreak stresses the need for plasmid typing, especially because SHV-5 beta-lactamase seems to be regionally spread predominantly via plasmid transfer.

Full Text

The Full Text of this article is available as a PDF (301.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allardet-Servent A., Bouziges N., Carles-Nurit M. J., Bourg G., Gouby A., Ramuz M. Use of low-frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections. J Clin Microbiol. 1989 Sep;27(9):2057–2061. doi: 10.1128/jcm.27.9.2057-2061.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May 15;276(Pt 1):269–270. doi: 10.1042/bj2760269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arlet G., Rouveau M., Casin I., Bouvet P. J., Lagrange P. H., Philippon A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994 Oct;32(10):2553–2558. doi: 10.1128/jcm.32.10.2553-2558.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baquero F., Cantón R., Martinez-Beltrán J., Bolmström A. The E-Test as an epidemiologic tool. Diagn Microbiol Infect Dis. 1992 Jul;15(5):483–487. doi: 10.1016/0732-8893(92)90095-b. [DOI] [PubMed] [Google Scholar]
  5. Bauernfeind A., Rosenthal E., Eberlein E., Holley M., Schweighart S. Spread of Klebsiella pneumoniae producing SHV-5 beta-lactamase among hospitalized patients. Infection. 1993 Jan-Feb;21(1):18–22. doi: 10.1007/BF01739303. [DOI] [PubMed] [Google Scholar]
  6. Billot-Klein D., Gutmann L., Collatz E. Nucleotide sequence of the SHV-5 beta-lactamase gene of a Klebsiella pneumoniae plasmid. Antimicrob Agents Chemother. 1990 Dec;34(12):2439–2441. doi: 10.1128/aac.34.12.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bingen E. H., Denamur E., Elion J. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin Microbiol Rev. 1994 Jul;7(3):311–327. doi: 10.1128/cmr.7.3.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bingen E. H., Desjardins P., Arlet G., Bourgeois F., Mariani-Kurkdjian P., Lambert-Zechovsky N. Y., Denamur E., Philippon A., Elion J. Molecular epidemiology of plasmid spread among extended broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a pediatric hospital. J Clin Microbiol. 1993 Feb;31(2):179–184. doi: 10.1128/jcm.31.2.179-184.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987 Aug 8;2(8554):302–306. doi: 10.1016/s0140-6736(87)90891-9. [DOI] [PubMed] [Google Scholar]
  10. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bush K., Singer S. B. Biochemical characteristics of extended broad spectrum beta-lactamases. Infection. 1989 Nov-Dec;17(6):429–433. doi: 10.1007/BF01645566. [DOI] [PubMed] [Google Scholar]
  12. Coovadia Y. M., Johnson A. P., Bhana R. H., Hutchinson G. R., George R. C., Hafferjee I. E. Multiresistant Klebsiella pneumoniae in a neonatal nursery: the importance of maintenance of infection control policies and procedures in the prevention of outbreaks. J Hosp Infect. 1992 Nov;22(3):197–205. doi: 10.1016/0195-6701(92)90044-m. [DOI] [PubMed] [Google Scholar]
  13. Du Bois S. K., Marriott M. S., Amyes S. G. TEM- and SHV-derived extended-spectrum beta-lactamases: relationship between selection, structure and function. J Antimicrob Chemother. 1995 Jan;35(1):7–22. doi: 10.1093/jac/35.1.7. [DOI] [PubMed] [Google Scholar]
  14. Eisen D., Russell E. G., Tymms M., Roper E. J., Grayson M. L., Turnidge J. Random amplified polymorphic DNA and plasmid analyses used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. J Clin Microbiol. 1995 Mar;33(3):713–717. doi: 10.1128/jcm.33.3.713-717.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gouby A., Neuwirth C., Bourg G., Bouziges N., Carles-Nurit M. J., Despaux E., Ramuz M. Epidemiological study by pulsed-field gel electrophoresis of an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a geriatric hospital. J Clin Microbiol. 1994 Feb;32(2):301–305. doi: 10.1128/jcm.32.2.301-305.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gutmann L., Ferré B., Goldstein F. W., Rizk N., Pinto-Schuster E., Acar J. F., Collatz E. SHV-5, a novel SHV-type beta-lactamase that hydrolyzes broad-spectrum cephalosporins and monobactams. Antimicrob Agents Chemother. 1989 Jun;33(6):951–956. doi: 10.1128/aac.33.6.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haertl R., Bandlow G. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments. J Clin Microbiol. 1993 Jan;31(1):128–133. doi: 10.1128/jcm.31.1.128-133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jacoby G. A. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994;13 (Suppl 1):S2–11. doi: 10.1007/BF02390679. [DOI] [PubMed] [Google Scholar]
  19. Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
  20. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  21. Shannon K. P., King A., Phillips I., Nicolas M. H., Philippon A. Importance of organisms producing broad-spectrum SHV-group beta-lactamases into the United Kingdom. J Antimicrob Chemother. 1990 Mar;25(3):343–351. doi: 10.1093/jac/25.3.343. [DOI] [PubMed] [Google Scholar]
  22. Sirot D., De Champs C., Chanal C., Labia R., Darfeuille-Michaud A., Perroux R., Sirot J. Translocation of antibiotic resistance determinants including an extended-spectrum beta-lactamase between conjugative plasmids of Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 1991 Aug;35(8):1576–1581. doi: 10.1128/aac.35.8.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother. 1990 Nov;26(5):635–648. doi: 10.1093/jac/26.5.635. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES