Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Mar;34(3):575–578. doi: 10.1128/jcm.34.3.575-578.1996

Genome macrorestriction analysis of sequential Pseudomonas aeruginosa isolates from bronchiectasis patients without cystic fibrosis.

S W Hla 1, K P Hui 1, W C Tan 1, B Ho 1
PMCID: PMC228849  PMID: 8904417

Abstract

The respiratory tracts of bronchiectasis patients may be persistently colonized with Pseudomonas aeruginosa, despite intensive chemotherapy. The organism may undergo phenotypic changes in these patients, providing misleading typing results by conventional methods. We prospectively studied eight bronchiectasis patients without cystic fibrosis over a period of 1 year. A high microbial load of P. aeruginosa was found in 70% of sputum samples collected. Of these, 55 sequential P. aeruginosa isolates were characterized by a genotyping method, pulsed-field gel electrophoresis, to overcome the problem of differentiating the P. aeruginosa strains during chemotherapy. Genome macrorestriction fingerprinting patterns were analyzed after digestion with XbaI restriction endonuclease. Of the eight patients, six harbored a single dominant strain of P. aeruginosa, with an intrapatient macrorestriction similarity pattern range of 96 to 100%. The other two patients were infected with mixed bacterial isolates including P. aeruginosa. However, diversity was observed in the P. aeruginosa isolates from all eight patients, with a relatedness of only 55 to 65%. The study further strengthens the fact that pulsed-field gel electrophoresis can be used efficiently and effectively to differentiate P. aeruginosa strains in bronchiectasis patients without cystic fibrosis.

Full Text

The Full Text of this article is available as a PDF (232.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allardet-Servent A., Bouziges N., Carles-Nurit M. J., Bourg G., Gouby A., Ramuz M. Use of low-frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections. J Clin Microbiol. 1989 Sep;27(9):2057–2061. doi: 10.1128/jcm.27.9.2057-2061.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker A. F., Bardana E. J., Jr Bronchiectasis: update of an orphan disease. Am Rev Respir Dis. 1988 Apr;137(4):969–978. doi: 10.1164/ajrccm/137.4.969. [DOI] [PubMed] [Google Scholar]
  3. Burns M. W. Significance of Pseudomonas aeruginosa in sputum. Br Med J. 1973 Aug 18;3(5876):382–383. doi: 10.1136/bmj.3.5876.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Godard C., Plesiat P., Michel-Briand Y. Persistence of Pseudomonas aeruginosa strains in seven cystic fibrosis patients followed over 20 months. Eur J Med. 1993 Feb;2(2):117–120. [PubMed] [Google Scholar]
  5. Grothues D., Koopmann U., von der Hardt H., Tümmler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol. 1988 Oct;26(10):1973–1977. doi: 10.1128/jcm.26.10.1973-1977.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grundmann H., Schneider C., Hartung D., Daschner F. D., Pitt T. L. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol. 1995 Mar;33(3):528–534. doi: 10.1128/jcm.33.3.528-534.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hector J. S., Johnson A. R. Determination of genome size of Pseudomonas aeruginosa by PFGE: analysis of restriction fragments. Nucleic Acids Res. 1990 Jun 11;18(11):3171–3174. doi: 10.1093/nar/18.11.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kulczycki L. L., Murphy T. M., Bellanti J. A. Pseudomonas colonization in cystic fibrosis. A study of 160 patients. JAMA. 1978 Jul 7;240(1):30–34. [PubMed] [Google Scholar]
  9. Lapa e Silva J. R., Guerreiro D., Noble B., Poulter L. W., Cole P. J. Immunopathology of experimental bronchiectasis. Am J Respir Cell Mol Biol. 1989 Oct;1(4):297–304. doi: 10.1165/ajrcmb/1.4.297. [DOI] [PubMed] [Google Scholar]
  10. Loutit J. S., Tompkins L. S. Restriction enzyme and Southern hybridization analyses of Pseudomonas aeruginosa strains from patients with cystic fibrosis. J Clin Microbiol. 1991 Dec;29(12):2897–2900. doi: 10.1128/jcm.29.12.2897-2900.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nagaki M., Shimura S., Tanno Y., Ishibashi T., Sasaki H., Takishima T. Role of chronic Pseudomonas aeruginosa infection in the development of bronchiectasis. Chest. 1992 Nov;102(5):1464–1469. doi: 10.1378/chest.102.5.1464. [DOI] [PubMed] [Google Scholar]
  12. Ojeniyi B., Høiby N., Rosdahl V. T. Genome fingerprinting as a typing method used on polyagglutinable Pseudomonas aeruginosa isolates from cystic fibrosis patients. APMIS. 1991 Jun;99(6):492–498. [PubMed] [Google Scholar]
  13. Poh C. L., Yeo C. C. Recent advances in typing of Pseudomonas aeruginosa. J Hosp Infect. 1993 Jul;24(3):175–181. doi: 10.1016/0195-6701(93)90047-4. [DOI] [PubMed] [Google Scholar]
  14. Pseudomonas aeruginosa infections: persisting problems and current research to find new therapies. Ann Intern Med. 1975 Jun;82(6):819–831. doi: 10.7326/0003-4819-82-6-819. [DOI] [PubMed] [Google Scholar]
  15. Rivera M., Nicotra M. B. Pseudomonas aeruginosa mucoid strain. Its significance in adult chest diseases. Am Rev Respir Dis. 1982 Nov;126(5):833–836. doi: 10.1164/arrd.1982.126.5.833. [DOI] [PubMed] [Google Scholar]
  16. Speert D. P., Campbell M. E., Farmer S. W., Volpel K., Joffe A. M., Paranchych W. Use of a pilin gene probe to study molecular epidemiology of Pseudomonas aeruginosa. J Clin Microbiol. 1989 Nov;27(11):2589–2593. doi: 10.1128/jcm.27.11.2589-2593.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Speert D. P., Farmer S. W., Campbell M. E., Musser J. M., Selander R. K., Kuo S. Conversion of Pseudomonas aeruginosa to the phenotype characteristic of strains from patients with cystic fibrosis. J Clin Microbiol. 1990 Feb;28(2):188–194. doi: 10.1128/jcm.28.2.188-194.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Struelens M. J., Schwam V., Deplano A., Baran D. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol. 1993 Sep;31(9):2320–2326. doi: 10.1128/jcm.31.9.2320-2326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Taylor R. F., Hodson M. E., Pitt T. L. Adult cystic fibrosis: association of acute pulmonary exacerbations and increasing severity of lung disease with auxotrophic mutants of Pseudomonas aeruginosa. Thorax. 1993 Oct;48(10):1002–1005. doi: 10.1136/thx.48.10.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995 Sep;33(9):2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Terry J. M., Piña S. E., Mattingly S. J. Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1. Infect Immun. 1991 Feb;59(2):471–477. doi: 10.1128/iai.59.2.471-477.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Trucksis M., Swartz M. N. Bronchiectasis: a current view. Curr Clin Top Infect Dis. 1991;11:170–205. [PubMed] [Google Scholar]
  23. Wolz C., Kiosz G., Ogle J. W., Vasil M. L., Schaad U., Botzenhart K., Döring G. Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe. Epidemiol Infect. 1989 Apr;102(2):205–214. doi: 10.1017/s0950268800029873. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES