Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Mar;34(3):622–627. doi: 10.1128/jcm.34.3.622-627.1996

Rapid subgenus identification of human adenovirus isolates by a general PCR.

A H Kidd 1, M Jonsson 1, D Garwicz 1, A E Kajon 1, A G Wermenbol 1, M W Verweij 1, J C De Jong 1
PMCID: PMC228858  PMID: 8904426

Abstract

In most clinical situations involving adenovirus infection, subgenus (subgroup) identification of an adenovirus isolate is as informative as a finer identification by serotype. A PCR method which allows the identification of human adenovirus isolates as members of subgenera A, B:1, B:2, C, D, E, or F is described. It is based on a simple (nonnested) PCR using primers which bind to regions immediately flanking the VA RNA-encoding regions of human adenovirus genomes. The PCR allows amplification of DNA from all 49 human adenovirus prototype strains so far described. Since there are differences in the lengths of the VA RNA-encoding regions in adenoviruses of different subgenera, it is possible to differentiate some subgenera according to the size of the PCR product determined by electrophoresis. This forms the basis of an initial broad categorization of isolates as belonging to either (i) subgenus B:1, C, D, or E or (ii) subgenus A, B:2, or F. Subgenus identification is completed by a one-step restriction enzyme digestion and gel electrophoresis. The method was assessed by blind subgenus identification of 200 miscellaneous primate adenovirus isolates prepared by the reference laboratory at Bilthoven, The Netherlands. Identification at the subgenus level by PCR correlated 91.5% with the results of serotyping. A further 5.5% of isolates were correctly identified as belonging to one of two specified subgenera. Six of the 200 identifications (3%) were unsuccessful for various reasons, including weak PCR products, intermediate strains, and mistaken primate host. The method should serve as a rapid means of confirming adenovirus cytopathic effects in laboratories performing virus culture, with simultaneous subgenus identification of the isolate. It will also have relevance as an aid to conventional serotyping for epidemiological purposes, since for all adenoviruses except those belonging to subgenus D, neutralization tests need only involve a maximum of four type-specific antisera.

Full Text

The Full Text of this article is available as a PDF (256.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian T., Bastian B., Benoist W., Hierholzer J. C., Wigand R. Characterization of adenovirus 15/H9 intermediate strains. Intervirology. 1985;23(1):15–22. doi: 10.1159/000149562. [DOI] [PubMed] [Google Scholar]
  2. Adrian T., Wigand R., Richter J. Gastroenteritis in infants, associated with a genome type of adenovirus 31 and with combined rotavirus and adenovirus 31 infection. Eur J Pediatr. 1987 Jan;146(1):38–40. doi: 10.1007/BF00647280. [DOI] [PubMed] [Google Scholar]
  3. Allard A., Albinsson B., Wadell G. Detection of adenoviruses in stools from healthy persons and patients with diarrhea by two-step polymerase chain reaction. J Med Virol. 1992 Jun;37(2):149–157. doi: 10.1002/jmv.1890370214. [DOI] [PubMed] [Google Scholar]
  4. Allard A., Girones R., Juto P., Wadell G. Polymerase chain reaction for detection of adenoviruses in stool samples. J Clin Microbiol. 1990 Dec;28(12):2659–2667. doi: 10.1128/jcm.28.12.2659-2667.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allard A., Kajon A., Wadell G. Simple procedure for discrimination and typing of enteric adenoviruses after detection by polymerase chain reaction. J Med Virol. 1994 Nov;44(3):250–257. doi: 10.1002/jmv.1890440307. [DOI] [PubMed] [Google Scholar]
  6. Bandea C. I., Wu M. W., Wu G. J. Adenovirus VARNA1 gene B block promoter element sequences required for transcription and for interaction with transcription factors. J Mol Biol. 1992 Oct 20;227(4):1068–1085. doi: 10.1016/0022-2836(92)90522-l. [DOI] [PubMed] [Google Scholar]
  7. Boursnell M. E., Mautner V. Recombination in adenovirus: crossover sites in intertypic recombinants are located in regions of homology. Virology. 1981 Jul 15;112(1):198–209. doi: 10.1016/0042-6822(81)90625-5. [DOI] [PubMed] [Google Scholar]
  8. Brandt C. D., Kim H. W., Vargosko A. J., Jeffries B. C., Arrobio J. O., Rindge B., Parrott R. H., Chanock R. M. Infections in 18,000 infants and children in a controlled study of respiratory tract disease. I. Adenovirus pathogenicity in relation to serologic type and illness syndrome. Am J Epidemiol. 1969 Dec;90(6):484–500. doi: 10.1093/oxfordjournals.aje.a121094. [DOI] [PubMed] [Google Scholar]
  9. Chou S. M., Roos R., Burrell R., Gutmann L., Harley J. B. Subacute focal adenovirus encephalitis. J Neuropathol Exp Neurol. 1973 Jan;32(1):34–50. doi: 10.1097/00005072-197301000-00003. [DOI] [PubMed] [Google Scholar]
  10. Fox J. P., Hall C. E., Cooney M. K. The Seattle Virus Watch. VII. Observations of adenovirus infections. Am J Epidemiol. 1977 Apr;105(4):362–386. doi: 10.1093/oxfordjournals.aje.a112394. [DOI] [PubMed] [Google Scholar]
  11. Herrmann J. E., Perron-Henry D. M., Blacklow N. R. Antigen detection with monoclonal antibodies for the diagnosis of adenovirus gastroenteritis. J Infect Dis. 1987 Jun;155(6):1167–1171. doi: 10.1093/infdis/155.6.1167. [DOI] [PubMed] [Google Scholar]
  12. Hierholzer J. C., Halonen P. E., Dahlen P. O., Bingham P. G., McDonough M. M. Detection of adenovirus in clinical specimens by polymerase chain reaction and liquid-phase hybridization quantitated by time-resolved fluorometry. J Clin Microbiol. 1993 Jul;31(7):1886–1891. doi: 10.1128/jcm.31.7.1886-1891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hierholzer J. C., Pumarola A. Antigenic characterization of intermediate adenovirus 14-11 strains associated with upper respiratory illness in a military camp. Infect Immun. 1976 Feb;13(2):354–359. doi: 10.1128/iai.13.2.354-359.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hierholzer J. C., Stone Y. O., Broderson J. R. Antigenic relationships among the 47 human adenoviruses determined in reference horse antisera. Arch Virol. 1991;121(1-4):179–197. doi: 10.1007/BF01316753. [DOI] [PubMed] [Google Scholar]
  15. Hierholzer J. C., Wigand R., Anderson L. J., Adrian T., Gold J. W. Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43-47). J Infect Dis. 1988 Oct;158(4):804–813. doi: 10.1093/infdis/158.4.804. [DOI] [PubMed] [Google Scholar]
  16. Johansson M. E., Uhnoo I., Kidd A. H., Madeley C. R., Wadell G. Direct identification of enteric adenovirus, a candidate new serotype, associated with infantile gastroenteritis. J Clin Microbiol. 1980 Jul;12(1):95–100. doi: 10.1128/jcm.12.1.95-100.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kidd A. H., Cosgrove B. P., Brown R. A., Madeley C. R. Faecal adenoviruses from Glasgow babies. Studies on culture and identity. J Hyg (Lond) 1982 Jun;88(3):463–474. doi: 10.1017/s0022172400070327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kidd A. H., Erasmus M. J., Tiemessen C. T. Fiber sequence heterogeneity in subgroup F adenoviruses. Virology. 1990 Nov;179(1):139–150. doi: 10.1016/0042-6822(90)90283-w. [DOI] [PubMed] [Google Scholar]
  19. Kidd A. H., Garwicz D., Oberg M. Human and simian adenoviruses: phylogenetic inferences from analysis of VA RNA genes. Virology. 1995 Feb 20;207(1):32–45. doi: 10.1006/viro.1995.1049. [DOI] [PubMed] [Google Scholar]
  20. Kidd A. H., Tiemessen C. T. Characterization of a single SA7-like VA RNA gene in subgroup F adenoviruses. J Gen Virol. 1993 Aug;74(Pt 8):1621–1626. doi: 10.1099/0022-1317-74-8-1621. [DOI] [PubMed] [Google Scholar]
  21. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  22. Lew J. F., Moe C. L., Monroe S. S., Allen J. R., Harrison B. M., Forrester B. D., Stine S. E., Woods P. A., Hierholzer J. C., Herrmann J. E. Astrovirus and adenovirus associated with diarrhea in children in day care settings. J Infect Dis. 1991 Oct;164(4):673–678. doi: 10.1093/infdis/164.4.673. [DOI] [PubMed] [Google Scholar]
  23. Li Q. G., Hambraeus J., Wadell G. Genetic relationship between thirteen genome types of adenovirus 11, 34, and 35 with different tropisms. Intervirology. 1991;32(6):338–350. doi: 10.1159/000150218. [DOI] [PubMed] [Google Scholar]
  24. Li Q. G., Wadell G. The degree of genetic variability among adenovirus type 4 strains isolated from man and chimpanzee. Arch Virol. 1988;101(1-2):65–77. doi: 10.1007/BF01314652. [DOI] [PubMed] [Google Scholar]
  25. Ljunggren K., Kidd A. H. Enzymatic amplification and sequence analysis of precore/core DNA in HBsAg-positive patients. J Med Virol. 1991 Jul;34(3):179–183. doi: 10.1002/jmv.1890340309. [DOI] [PubMed] [Google Scholar]
  26. Ma Y., Mathews M. B. Comparative analysis of the structure and function of adenovirus virus-associated RNAs. J Virol. 1993 Nov;67(11):6605–6617. doi: 10.1128/jvi.67.11.6605-6617.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmitz H., Wigand R., Heinrich W. Worldwide epidemiology of human adenovirus infections. Am J Epidemiol. 1983 Apr;117(4):455–466. doi: 10.1093/oxfordjournals.aje.a113563. [DOI] [PubMed] [Google Scholar]
  28. Schnurr D., Dondero M. E. Two new candidate adenovirus serotypes. Intervirology. 1993;36(2):79–83. doi: 10.1159/000150325. [DOI] [PubMed] [Google Scholar]
  29. Singh-Naz N., Rodriguez W. J., Kidd A. H., Brandt C. D. Monoclonal antibody enzyme-linked immunosorbent assay for specific identification and typing of subgroup F adenoviruses. J Clin Microbiol. 1988 Feb;26(2):297–300. doi: 10.1128/jcm.26.2.297-300.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Uhnoo I., Wadell G., Svensson L., Johansson M. E. Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children. J Clin Microbiol. 1984 Sep;20(3):365–372. doi: 10.1128/jcm.20.3.365-372.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wadell G., Hammarskjöld M. L., Winberg G., Varsanyi T. M., Sundell G. Genetic variability of adenoviruses. Ann N Y Acad Sci. 1980;354:16–42. doi: 10.1111/j.1749-6632.1980.tb27955.x. [DOI] [PubMed] [Google Scholar]
  32. Wadell G. Molecular epidemiology of human adenoviruses. Curr Top Microbiol Immunol. 1984;110:191–220. doi: 10.1007/978-3-642-46494-2_7. [DOI] [PubMed] [Google Scholar]
  33. de Jong J. C., Bijlsma K., Wermenbol A. G., Verweij-Uijterwaal M. W., van der Avoort H. G., Wood D. J., Bailey A. S., Osterhaus A. D. Detection, typing, and subtyping of enteric adenoviruses 40 and 41 from fecal samples and observation of changing incidences of infections with these types and subtypes. J Clin Microbiol. 1993 Jun;31(6):1562–1569. doi: 10.1128/jcm.31.6.1562-1569.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Jong J. C., Wigand R., Kidd A. H., Wadell G., Kapsenberg J. G., Muzerie C. J., Wermenbol A. G., Firtzlaff R. G. Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infant stool. J Med Virol. 1983;11(3):215–231. doi: 10.1002/jmv.1890110305. [DOI] [PubMed] [Google Scholar]
  35. van der Avoort H. G., Wermenbol A. G., Zomerdijk T. P., Kleijne J. A., van Asten J. A., Jensma P., Osterhaus A. D., Kidd A. H., de Jong J. C. Characterization of fastidious adenovirus types 40 and 41 by DNA restriction enzyme analysis and by neutralizing monoclonal antibodies. Virus Res. 1989 Feb;12(2):139–157. doi: 10.1016/0168-1702(89)90060-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES