Abstract
Studies were conducted to identify factors contributing to the inability of the Vitek Gram-Positive Susceptibility system (GPS; bioMerieux, Vitek, Inc., Hazelwood, Mo.) to reliably detect vanB-mediated vancomycin resistance among enterococci. To some extent the accuracy of the GPS depended on a particular strain's level of resistance, as all isolates for which vancomycin MICs were > or = 128 mu g/ml were readily detected but detection of resistance expressed by several strains for which MICs were < or = 64 mu g/ml was sporadic. Factors besides the level of resistance were studied in two vanB strains. For one strain (Enterococcus faecium U8304), the ability of GPS to detect resistance was accurate and consistent, while for the other (Enterococcus faecalis V583), GPS results were inconsistent and unreliable. Using these isolates, we established that growth medium had the most notable effect on the detection of resistance. In the absence of vancomycin, Vitek GPS broth supported growth comparable to that obtained with brain heart infusion broth for both E. faecium U8304 and E. faecalis V583. However, in the presence of vancomycin the growth patterns changed dramatically so that neither VanB strain grew well in Vitek broth, and growth of V583 was barely detectable after 8 h of incubation. In contrast, good growth of both strains was observed in brain heart infusion broth supplemented with vancomycin. Additionally, the same medium effect was observed with other inducibly resistant VanB strains. In conclusion, although Vitek broth can support good enterococcal growth, this medium does not sufficiently support expression of vancomycin resistance by certain strains to allow them to be detected by the Vitek automated system. Furthermore, this observation establishes that the type of growth medium used can substantially influence the expression of vancomycin resistance and indicates that medium-based strategies should be explored for the enhancement of resistance detection among commercial systems.
Full Text
The Full Text of this article is available as a PDF (214.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother. 1993 Aug;37(8):1563–1571. doi: 10.1128/aac.37.8.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark N. C., Cooksey R. C., Hill B. C., Swenson J. M., Tenover F. C. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob Agents Chemother. 1993 Nov;37(11):2311–2317. doi: 10.1128/aac.37.11.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evers S., Sahm D. F., Courvalin P. The vanB gene of vancomycin-resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide-resistance proteins VanA and VanC. Gene. 1993 Feb 14;124(1):143–144. doi: 10.1016/0378-1119(93)90779-3. [DOI] [PubMed] [Google Scholar]
- Facklam R. R., Collins M. D. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol. 1989 Apr;27(4):731–734. doi: 10.1128/jcm.27.4.731-734.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Free L., Sahm D. F. Investigation of the reformulated Remel Synergy Quad plate for detection of high-level aminoglycoside and vancomycin resistance among enterococci. J Clin Microbiol. 1995 Jun;33(6):1643–1645. doi: 10.1128/jcm.33.6.1643-1645.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handwerger S., Pucci M. J., Kolokathis A. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob Agents Chemother. 1990 Feb;34(2):358–360. doi: 10.1128/aac.34.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintiliani R., Jr, Evers S., Courvalin P. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J Infect Dis. 1993 May;167(5):1220–1223. doi: 10.1093/infdis/167.5.1220. [DOI] [PubMed] [Google Scholar]
- Sahm D. F., Free L., Handwerger S. Inducible and constitutive expression of vanC-1-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob Agents Chemother. 1995 Jul;39(7):1480–1484. doi: 10.1128/aac.39.7.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother. 1989 Sep;33(9):1588–1591. doi: 10.1128/aac.33.9.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahm D. F., Olsen L. In vitro detection of enterococcal vancomycin resistance. Antimicrob Agents Chemother. 1990 Sep;34(9):1846–1848. doi: 10.1128/aac.34.9.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson J. M., Clark N. C., Ferraro M. J., Sahm D. F., Doern G., Pfaller M. A., Reller L. B., Weinstein M. P., Zabransky R. J., Tenover F. C. Development of a standardized screening method for detection of vancomycin-resistant enterococci. J Clin Microbiol. 1994 Jul;32(7):1700–1704. doi: 10.1128/jcm.32.7.1700-1704.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson J. M., Ferraro M. J., Sahm D. F., Charache P., Tenover F. C. New vancomycin disk diffusion breakpoints for enterococci. The National Committee for Clinical Laboratory Standards Working Group on Enterococci. J Clin Microbiol. 1992 Oct;30(10):2525–2528. doi: 10.1128/jcm.30.10.2525-2528.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swenson J. M., Hill B. C., Thornsberry C. Problems with the disk diffusion test for detection of vancomycin resistance in enterococci. J Clin Microbiol. 1989 Sep;27(9):2140–2142. doi: 10.1128/jcm.27.9.2140-2142.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenover F. C., Swenson J. M., O'Hara C. M., Stocker S. A. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J Clin Microbiol. 1995 Jun;33(6):1524–1527. doi: 10.1128/jcm.33.6.1524-1527.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tenover F. C., Tokars J., Swenson J., Paul S., Spitalny K., Jarvis W. Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci. J Clin Microbiol. 1993 Jul;31(7):1695–1699. doi: 10.1128/jcm.31.7.1695-1699.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willey B. M., Kreiswirth B. N., Simor A. E., Faur Y., Patel M., Williams G., Low D. E. Identification and characterization of multiple species of vancomycin-resistant enterococci, including an evaluation of Vitek software version 7.1. J Clin Microbiol. 1993 Oct;31(10):2777–2779. doi: 10.1128/jcm.31.10.2777-2779.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willey B. M., Kreiswirth B. N., Simor A. E., Willaims G., Scriver S. R., Phillips A., Low D. E. Detection of vancomycin resistance in Enterococcus species. J Clin Microbiol. 1992 Jul;30(7):1621–1624. doi: 10.1128/jcm.30.7.1621-1624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zabransky R. J., Dinuzzo A. R., Woods G. L. Detection of vancomycin resistance in enterococci by the Alamar MIC system. J Clin Microbiol. 1995 Apr;33(4):791–793. doi: 10.1128/jcm.33.4.791-793.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zarlenga L. J., Gilmore M. S., Sahm D. F. Effects of amino acids on expression of enterococcal vancomycin resistance. Antimicrob Agents Chemother. 1992 Apr;36(4):902–905. doi: 10.1128/aac.36.4.902. [DOI] [PMC free article] [PubMed] [Google Scholar]