Abstract
We have developed techniques for studying patch-clamped membranes inside glass pipettes using high voltage electron microscopy (HVEM). To preserve the patch structure with the least possible distortion, we rapidly froze and freeze dried the pipette tip. The pipette is transparent for more than 50 microns from the tip. HVEM images of patches confirm light microscopy observations that the patch is not a bare bilayer, but a membrane-covered bleb of cytoplasm that may include organelles and cytoskeleton. The membrane that spans the pipette is commonly tens of micrometers from the tip of the pipette and occasionally as far as 100 microns. The structure of patches taken from a single cell type is variable but there are consistent differences between patches made from different cell types. With suction applied to the pipette before seal formation, we have seen in the light microscope vesicles swept from the plasmalemma up the pipette. These vesicles are visible in electron micrographs, particularly those made from chick cardiac muscle. Colloidal gold labeling of the patch permitted identification of lectin-binding sites and acetylcholine receptors. In young cultures of Xenopus myocytes, the receptors were diffuse. In 1-wk- old cultures, the receptors formed densely packed arrays. The patch pipette can serve, not only as a recording device, but as a tool for sampling discrete regions of the cell surface. Because the pipette has a constant path length for axial rotation, it is a unique specimen holder for microtomography. We have made preliminary tomographic reconstructions of a patch from Xenopus oocyte.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevan S., Steinbach J. H. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol. 1977 May;267(1):195–213. doi: 10.1113/jphysiol.1977.sp011808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloch R. J., Morrow J. S. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989 Feb;108(2):481–493. doi: 10.1083/jcb.108.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bridgman P. C., Kachar B., Reese T. S. The structure of cytoplasm in directly frozen cultured cells. II. Cytoplasmic domains associated with organelle movements. J Cell Biol. 1986 Apr;102(4):1510–1521. doi: 10.1083/jcb.102.4.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crowe J. H., Spargo B. J., Crowe L. M. Preservation of dry liposomes does not require retention of residual water. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1537–1540. doi: 10.1073/pnas.84.6.1537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischbach G. D. Synapse formation between dissociated nerve and muscle cells in low density cell cultures. Dev Biol. 1972 Jun;28(2):407–429. doi: 10.1016/0012-1606(72)90023-1. [DOI] [PubMed] [Google Scholar]
- Giebelhaus D. H., Zelus B. D., Henchman S. K., Moon R. T. Changes in the expression of alpha-fodrin during embryonic development of Xenopus laevis. J Cell Biol. 1987 Aug;105(2):843–853. doi: 10.1083/jcb.105.2.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Hoppeler H. Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem. 1986 Nov;34(11):1389–1398. doi: 10.1177/34.11.3534077. [DOI] [PubMed] [Google Scholar]
- Gu J., D'Andrea M. Comparison of detecting sensitivities of different sizes of gold particles with electron-microscopic immunogold staining using atrial natriuretic peptide in rat atria as a model. Am J Anat. 1989 Jun-Jul;185(2-3):264–270. doi: 10.1002/aja.1001850219. [DOI] [PubMed] [Google Scholar]
- Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Kidokoro Y., Anderson M. J., Gruener R. Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture. Dev Biol. 1980 Aug;78(2):464–483. doi: 10.1016/0012-1606(80)90347-4. [DOI] [PubMed] [Google Scholar]
- Linner J. G., Livesey S. A., Harrison D. S., Steiner A. L. A new technique for removal of amorphous phase tissue water without ice crystal damage: a preparative method for ultrastructural analysis and immunoelectron microscopy. J Histochem Cytochem. 1986 Sep;34(9):1123–1135. doi: 10.1177/34.9.2426340. [DOI] [PubMed] [Google Scholar]
- Matthews-Bellinger J., Salpeter M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978 Jun;279:197–213. doi: 10.1113/jphysiol.1978.sp012340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mishina M., Takai T., Imoto K., Noda M., Takahashi T., Numa S., Methfessel C., Sakmann B. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986 May 22;321(6068):406–411. doi: 10.1038/321406a0. [DOI] [PubMed] [Google Scholar]
- Ohtake N. Attachment of cytoskeletons to cell membranes in human blood platelets as revealed by the quick-freezing and deep-etching replica method. J Ultrastruct Mol Struct Res. 1986 Apr-Jun;95(1-3):84–95. doi: 10.1016/0889-1605(86)90032-7. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Anderson K. L. The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution. Eur J Cell Biol. 1982 Nov;29(1):83–96. [PubMed] [Google Scholar]
- Post J. A., Verkleij A. J., Roelofsen B., Op de Kamp J. A. Plasmalogen content and distribution in the sarcolemma of cultured neonatal rat myocytes. FEBS Lett. 1988 Nov 21;240(1-2):78–82. doi: 10.1016/0014-5793(88)80343-0. [DOI] [PubMed] [Google Scholar]
- Quartararo N., Barry P. H. A simple technique for transferring excised patches of membrane to different solutions for single channel measurements. Pflugers Arch. 1987 Dec;410(6):677–678. doi: 10.1007/BF00581332. [DOI] [PubMed] [Google Scholar]
- Sargent P. B., Hedges B. E., Tsavaler L., Clemmons L., Tzartos S., Lindstrom J. M. Structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by cross-reacting monoclonal antibodies. J Cell Biol. 1984 Feb;98(2):609–618. doi: 10.1083/jcb.98.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokabe M., Sachs F. The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J Cell Biol. 1990 Aug;111(2):599–606. doi: 10.1083/jcb.111.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srinivasan Y., Elmer L., Davis J., Bennett V., Angelides K. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature. 1988 May 12;333(6169):177–180. doi: 10.1038/333177a0. [DOI] [PubMed] [Google Scholar]
- Steiner J. P., Walke H. T., Jr, Bennett V. Calcium/calmodulin inhibits direct binding of spectrin to synaptosomal membranes. J Biol Chem. 1989 Feb 15;264(5):2783–2791. [PubMed] [Google Scholar]
- Veltel D., Robenek H. Immunogold surface replica study on the distribution of acetylcholine receptors in cultured rat myotubes. J Histochem Cytochem. 1988 Oct;36(10):1295–1303. doi: 10.1177/36.10.3418108. [DOI] [PubMed] [Google Scholar]
- Wall D. A., Patel S. Isolation of plasma membrane complexes from Xenopus oocytes. J Membr Biol. 1989 Feb;107(2):189–201. doi: 10.1007/BF01871724. [DOI] [PubMed] [Google Scholar]