Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jan 1;112(1):149–158. doi: 10.1083/jcb.112.1.149

Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration

PMCID: PMC2288809  PMID: 1702443

Abstract

Transient increases in cytosolic free calcium concentration, [Ca2+]i, appear to be required for the migration of human neutrophils on poly-D- lysine-coated glass in the presence of dilute serum (Marks, P. W., and F. R. Maxfield. 1990. J. Cell Biol. 110:43-52). In contrast, no requirement for [Ca2+]i transients exists when neutrophils migrate on albumin-coated glass in the absence of serum. To determine the mechanism that necessitates [Ca2+]i transients on poly-D-lysine in the presence of serum, migration was examined on substrates consisting of purified adhesive glycoproteins. In the absence of external Ca2+, a treatment which causes the cessation of [Ca2+]i transients, migration on fibronectin (fn) and vitronectin (vn) was significantly inhibited. Migration was also inhibited in Ca2(+)-buffered cells on these substrates, indicating that this effect was the result of an alteration of [Ca2+]i. In the absence of external Ca2+, the inhibition of migration on fn or vn was more pronounced when soluble fn or vn was added to cells migrating on these substrates. This effect of soluble adhesive glycoprotein was specific: in the absence of external Ca2+, soluble fn did not affect the migration of cells on vn, and soluble vn did not affect the migration on fn. No additional inhibition of migration was observed in Ca2(+)-buffered cells with the addition of soluble adhesive glycoprotein. These data indicate that [Ca2+]i transients are involved in continued migration of human neutrophils on fn or vn, proteins which are part of the extracellular matrix that neutrophils encounter in vivo.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaout M. A., Todd R. F., 3rd, Dana N., Melamed J., Schlossman S. F., Colten H. R. Inhibition of phagocytosis of complement C3- or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte-granulocyte membrane glycoprotein (Mol). J Clin Invest. 1983 Jul;72(1):171–179. doi: 10.1172/JCI110955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes D. W., Mousetis L., Amos B., Silnutzer J. Glass-bead affinity chromatography of cell attachment and spreading-promoting factors of human serum. Anal Biochem. 1984 Feb;137(1):196–204. doi: 10.1016/0003-2697(84)90370-1. [DOI] [PubMed] [Google Scholar]
  3. Boucek M. M., Snyderman R. Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride. Science. 1976 Sep 3;193(4256):905–907. doi: 10.1126/science.948752. [DOI] [PubMed] [Google Scholar]
  4. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  5. Elferink J. G., Deierkauf M. The effect of quin2 on chemotaxis by polymorphonuclear leukocytes. Biochim Biophys Acta. 1985 Sep 30;846(3):364–369. doi: 10.1016/0167-4889(85)90007-2. [DOI] [PubMed] [Google Scholar]
  6. Gailit J., Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem. 1988 Sep 15;263(26):12927–12932. [PubMed] [Google Scholar]
  7. Gresham H. D., Goodwin J. L., Allen P. M., Anderson D. C., Brown E. J. A novel member of the integrin receptor family mediates Arg-Gly-Asp-stimulated neutrophil phagocytosis. J Cell Biol. 1989 May;108(5):1935–1943. doi: 10.1083/jcb.108.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grinnell F. Focal adhesion sites and the removal of substratum-bound fibronectin. J Cell Biol. 1986 Dec;103(6 Pt 2):2697–2706. doi: 10.1083/jcb.103.6.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grinnell F., Phan T. V. Deposition of fibronectin on material surfaces exposed to plasma: quantitative and biological studies. J Cell Physiol. 1983 Sep;116(3):289–296. doi: 10.1002/jcp.1041160305. [DOI] [PubMed] [Google Scholar]
  10. Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hogg N. The leukocyte integrins. Immunol Today. 1989 Apr;10(4):111–114. doi: 10.1016/0167-5699(89)90238-7. [DOI] [PubMed] [Google Scholar]
  12. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  13. Jungi T. W. Monocyte and neutrophil chemotactic activity of normal and diluted human serum and plasma. Int Arch Allergy Appl Immunol. 1977;53(1):18–28. doi: 10.1159/000231726. [DOI] [PubMed] [Google Scholar]
  14. Keizer G. D., Te Velde A. A., Schwarting R., Figdor C. G., De Vries J. E. Role of p150,95 in adhesion, migration, chemotaxis and phagocytosis of human monocytes. Eur J Immunol. 1987 Sep;17(9):1317–1322. doi: 10.1002/eji.1830170915. [DOI] [PubMed] [Google Scholar]
  15. Klebe R. J., Bentley K. L., Schoen R. C. Adhesive substrates for fibronectin. J Cell Physiol. 1981 Dec;109(3):481–488. doi: 10.1002/jcp.1041090314. [DOI] [PubMed] [Google Scholar]
  16. Lotz M. M., Korzelius C. A., Mercurio A. M. Human colon carcinoma cells use multiple receptors to adhere to laminin: involvement of alpha 6 beta 4 and alpha 2 beta 1 integrins. Cell Regul. 1990 Feb;1(3):249–257. doi: 10.1091/mbc.1.3.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marks P. W., Kruskal B. A., Maxfield F. R. Simultaneous addition of EGF prolongs the increase in cytosolic free calcium seen in response to bradykinin in NRK-49F cells. J Cell Physiol. 1988 Sep;136(3):519–525. doi: 10.1002/jcp.1041360318. [DOI] [PubMed] [Google Scholar]
  18. Marks P. W., Maxfield F. R. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol. 1990 Jan;110(1):43–52. doi: 10.1083/jcb.110.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin G. R., Timpl R. Laminin and other basement membrane components. Annu Rev Cell Biol. 1987;3:57–85. doi: 10.1146/annurev.cb.03.110187.000421. [DOI] [PubMed] [Google Scholar]
  20. Meshulam T., Proto P., Diamond R. D., Melnick D. A. Calcium modulation and chemotactic response: divergent stimulation of neutrophil chemotaxis and cytosolic calcium response by the chemotactic peptide receptor. J Immunol. 1986 Sep 15;137(6):1954–1960. [PubMed] [Google Scholar]
  21. Nathan C., Srimal S., Farber C., Sanchez E., Kabbash L., Asch A., Gailit J., Wright S. D. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol. 1989 Sep;109(3):1341–1349. doi: 10.1083/jcb.109.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ratan R. R., Shelanski M. L., Maxfield F. R. Transition from metaphase to anaphase is accompanied by local changes in cytoplasmic free calcium in Pt K2 kidney epithelial cells. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5136–5140. doi: 10.1073/pnas.83.14.5136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rogers J., Hesketh T. R., Smith G. A., Metcalfe J. C. Intracellular pH of stimulated thymocytes measured with a new fluorescent indicator. J Biol Chem. 1983 May 25;258(10):5994–5997. [PubMed] [Google Scholar]
  24. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  25. Sha'afi R. I., Shefcyk J., Yassin R., Molski T. F., Volpi M., Naccache P. H., White J. R., Feinstein M. B., Becker E. L. Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? J Cell Biol. 1986 Apr;102(4):1459–1463. doi: 10.1083/jcb.102.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shaffer M. C., Foley T. P., Barnes D. W. Quantitation of spreading factor in human biologic fluids. J Lab Clin Med. 1984 May;103(5):783–791. [PubMed] [Google Scholar]
  27. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  28. Vartio T. Fibronectin: multiple interactions assigned to structural domains. Med Biol. 1983;61(6):283–295. [PubMed] [Google Scholar]
  29. Wilson H. A., Greenblatt D., Poenie M., Finkelman F. D., Tsien R. Y. Crosslinkage of B lymphocyte surface immunoglobulin by anti-Ig or antigen induces prolonged oscillation of intracellular ionized calcium. J Exp Med. 1987 Aug 1;166(2):601–606. doi: 10.1084/jem.166.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zigmond S. H., Slonczewski J. L., Wilde M. W., Carson M. Polymorphonuclear leukocyte locomotion is insensitive to lowered cytoplasmic calcium levels. Cell Motil Cytoskeleton. 1988;9(2):184–189. doi: 10.1002/cm.970090210. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES