Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jan 2;112(2):267–277. doi: 10.1083/jcb.112.2.267

Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells

PMCID: PMC2288816  PMID: 1988461

Abstract

Several intraerythrocytic growth cycles of Plasmodium falciparum could be achieved in vitro using a serum free medium supplemented only with a human high density lipoprotein (HDL) fraction (d = 1.063-1.210). The parasitemia obtained was similar to that in standard culture medium containing human serum. The parasite development was incomplete with the low density lipoprotein (LDL) fraction and did not occur with the VLDL fraction. The lipid traffic from HDL to the infected erythrocytes was demonstrated by pulse labeling experiments using HDL loaded with either fluorescent NBD-phosphatidylcholine (NBD-PC) or radioactive [3H]palmitoyl-PC. At 37 degrees C, the lipid probes rapidly accumulated in the infected cells. After incubation in HDL medium containing labeled PC, a subsequent incubation in medium with either an excess of native HDL or 20% human serum induced the disappearance of the label from the erythrocyte plasma membrane but not from the intraerythrocytic parasite. Internalization of lipids did not occur at 4 degrees C. The mechanism involved a unidirectional flux of lipids but no endocytosis. The absence of labeling of P. falciparum, with HDL previously [125I]iodinated on their apolipoproteins or with antibodies against the apolipoproteins AI and AII by immunofluorescence and immunoblotting, confirmed that no endocytosis of the HDL was involved. A possible pathway of lipid transport could be a membrane flux since fluorescence videomicroscopy showed numerous organelles labeled with NBD-PC moving between the erythrocyte and the parasitophorous membranes. TLC analysis showed that a partial conversion of the PC to phosphatidylethanolamine was observed in P. falciparum-infected red cells after pulse with [3H]palmitoyl-PC-HDL. The intensity of the lipid traffic was stage dependent with a maximum at the trophozoite and young schizont stages (38th h of the erythrocyte life cycle). We conclude that the HDL fraction appears to be a major lipid source for Plasmodium growth.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Aikawa M. Morphological changes in erythrocytes induced by malarial parasites. Biol Cell. 1988;64(2):173–181. doi: 10.1016/0248-4900(88)90077-9. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bannister L. H., Mitchell G. H. Lipidic vacuoles in Plasmodium knowlesi erythrocytic schizonts. J Protozool. 1986 May;33(2):271–275. doi: 10.1111/j.1550-7408.1986.tb05605.x. [DOI] [PubMed] [Google Scholar]
  5. Beach D. H., Sherman I. W., Holz G. G., Jr Lipids of Plasmodium lophurae, and of erythrocytes and plasma of normal and P. lophurae-infected Pekin ducklings. J Parasitol. 1977 Feb;63(1):62–75. [PubMed] [Google Scholar]
  6. Beaumelle B. D., Vial H. J., Bienvenüe A. Enhanced transbilayer mobility of phospholipids in malaria-infected monkey erythrocytes: a spin-label study. J Cell Physiol. 1988 Apr;135(1):94–100. doi: 10.1002/jcp.1041350113. [DOI] [PubMed] [Google Scholar]
  7. Chapman M. J. Comparative analysis of mammalian plasma lipoproteins. Methods Enzymol. 1986;128:70–143. doi: 10.1016/0076-6879(86)28063-5. [DOI] [PubMed] [Google Scholar]
  8. Chen C. H., Albers J. J. Distribution of lecithin-cholesterol acyltransferase (LCAT) in human plasma lipoprotein fractions. Evidence for the association of active LCAT with low density lipoproteins. Biochem Biophys Res Commun. 1982 Aug;107(3):1091–1096. doi: 10.1016/0006-291x(82)90633-7. [DOI] [PubMed] [Google Scholar]
  9. Cheung M. C., Wolf A. C., Lum K. D., Tollefson J. H., Albers J. J. Distribution and localization of lecithin:cholesterol acyltransferase and cholesteryl ester transfer activity in A-I-containing lipoproteins. J Lipid Res. 1986 Nov;27(11):1135–1144. [PubMed] [Google Scholar]
  10. Coppens I., Baudhuin P., Opperdoes F. R., Courtoy P. J. Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6753–6757. doi: 10.1073/pnas.85.18.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coppens I., Opperdoes F. R., Courtoy P. J., Baudhuin P. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool. 1987 Nov;34(4):465–473. doi: 10.1111/j.1550-7408.1987.tb03216.x. [DOI] [PubMed] [Google Scholar]
  12. Cuthbert J. A., Lipsky P. E. Lipoproteins may provide fatty acids necessary for human lymphocyte proliferation by both low density lipoprotein receptor-dependent and -independent mechanisms. J Biol Chem. 1989 Aug 15;264(23):13468–13474. [PubMed] [Google Scholar]
  13. Daleke D. L., Huestis W. H. Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry. 1985 Sep 24;24(20):5406–5416. doi: 10.1021/bi00341a019. [DOI] [PubMed] [Google Scholar]
  14. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  15. Favre G., Blancy E., Tournier J. F., Soula G. Proliferative effect of high density lipoprotein (HDL) and HDL fractions (HDL1,2, HDL3) on virus transformed lymphoblastoid cells. Biochim Biophys Acta. 1989 Sep 19;1013(2):118–124. doi: 10.1016/0167-4889(89)90039-6. [DOI] [PubMed] [Google Scholar]
  16. Grellier P., Rigomier D., Schrével J. Induction in vitro de la schizogonie de Plasmodium falciparum par les lipoprotéines humaines de haute densité (HDL). C R Acad Sci III. 1990;311(10):361–367. [PubMed] [Google Scholar]
  17. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Haldar K., de Amorim A. F., Cross G. A. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J Cell Biol. 1989 Jun;108(6):2183–2192. doi: 10.1083/jcb.108.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hohengasser C. J., Thornburg J. T., van Paridon P. A., van der Schaft P., Wirtz K. W. Phosphorylation and degradation of exogenous phosphatidylinositol incorporated into Friend erythroleukemic cells. J Biol Chem. 1986 May 15;261(14):6255–6259. [PubMed] [Google Scholar]
  20. Holz G. G., Jr Lipids and the malarial parasite. Bull World Health Organ. 1977;55(2-3):237–248. [PMC free article] [PubMed] [Google Scholar]
  21. Hommel M., Semoff S. Expression and function of erythrocyte-associated surface antigens in malaria. Biol Cell. 1988;64(2):183–203. doi: 10.1016/0248-4900(88)90078-0. [DOI] [PubMed] [Google Scholar]
  22. Howard R. J., Lyon J. A., Uni S., Saul A. J., Aley S. B., Klotz F., Panton L. J., Sherwood J. A., Marsh K., Aikawa M. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J Cell Biol. 1987 May;104(5):1269–1280. doi: 10.1083/jcb.104.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Inselburg J., Banyal H. S. Plasmodium falciparum: synchronization of asexual development with aphidicolin, a DNA synthesis inhibitor. Exp Parasitol. 1984 Feb;57(1):48–54. doi: 10.1016/0014-4894(84)90061-4. [DOI] [PubMed] [Google Scholar]
  24. Jürgens G., Xu Q. B., Huber L. A., Böck G., Howanietz H., Wick G., Traill K. N. Promotion of lymphocyte growth by high density lipoproteins (HDL). Physiological significance of the HDL binding site. J Biol Chem. 1989 May 25;264(15):8549–8556. [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  28. Martin-Nizard F., Richard B., Torpier G., Nouvelot A., Fruchart J. C., Duthilleul P., Delbart C. Analysis of phospholipid transfer during HDL binding to platelets using a fluorescent analog of phosphatidylcholine. Thromb Res. 1987 Jun 15;46(6):811–825. doi: 10.1016/0049-3848(87)90073-9. [DOI] [PubMed] [Google Scholar]
  29. Mikkelsen R. B., Kamber M., Wadwa K. S., Lin P. S., Schmidt-Ullrich R. The role of lipids in Plasmodium falciparum invasion of erythrocytes: a coordinated biochemical and microscopic analysis. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5956–5960. doi: 10.1073/pnas.85.16.5956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moll G. N., Vial H. J., Ancelin M. L., Op den Kamp J. A., Roelofsen B., van Deenen L. L. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Lett. 1988 May 23;232(2):341–346. doi: 10.1016/0014-5793(88)80765-8. [DOI] [PubMed] [Google Scholar]
  31. Nivet C., Guillotte M., Pereira da Silva L. Plasmodium falciparum: one-step growth in a semi-defined medium and the stimulatory effect of human seric lipoproteins and liposomes. Exp Parasitol. 1983 Feb;55(1):147–151. doi: 10.1016/0014-4894(83)90008-5. [DOI] [PubMed] [Google Scholar]
  32. Oram J. F., Brinton E. A., Bierman E. L. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J Clin Invest. 1983 Nov;72(5):1611–1621. doi: 10.1172/JCI111120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oram J. F., Johnson C. J., Brown T. A. Interaction of high density lipoprotein with its receptor on cultured fibroblasts and macrophages. Evidence for reversible binding at the cell surface without internalization. J Biol Chem. 1987 Feb 15;262(5):2405–2410. [PubMed] [Google Scholar]
  34. Osborne J. C., Jr Delipidation of plasma lipoproteins. Methods Enzymol. 1986;128:213–222. doi: 10.1016/0076-6879(86)28069-6. [DOI] [PubMed] [Google Scholar]
  35. Pagano R. E., Sleight R. G. Defining lipid transport pathways in animal cells. Science. 1985 Sep 13;229(4718):1051–1057. doi: 10.1126/science.4035344. [DOI] [PubMed] [Google Scholar]
  36. Pittman R. C., Knecht T. P., Rosenbaum M. S., Taylor C. A., Jr A nonendocytotic mechanism for the selective uptake of high density lipoprotein-associated cholesterol esters. J Biol Chem. 1987 Feb 25;262(6):2443–2450. [PubMed] [Google Scholar]
  37. Prioli R. P., Rosenberg I., Shivakumar S., Pereira M. E. Specific binding of human plasma high density lipoprotein (cruzin) to Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Apr;28(3):257–263. doi: 10.1016/0166-6851(88)90010-2. [DOI] [PubMed] [Google Scholar]
  38. Rogers M. V., Henkle K. J., Fidge N. H., Mitchell G. F. Identification of a multispecific lipoprotein receptor in adult Schistosoma japonicum by ligand blotting analyses. Mol Biochem Parasitol. 1989 Jun 1;35(1):79–88. doi: 10.1016/0166-6851(89)90145-x. [DOI] [PubMed] [Google Scholar]
  39. Rumjanek F. D., Campos E. G., Afonso L. C. Evidence for the occurrence of LDL receptors in extracts of schistosomula of Schistosoma mansoni. Mol Biochem Parasitol. 1988 Mar;28(2):145–152. doi: 10.1016/0166-6851(88)90062-x. [DOI] [PubMed] [Google Scholar]
  40. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sleight R. G., Pagano R. E. Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus. J Cell Biol. 1984 Aug;99(2):742–751. doi: 10.1083/jcb.99.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stewart M. J., Schulman S., Vanderberg J. P. Rhoptry secretion of membranous whorls by Plasmodium falciparum merozoites. Am J Trop Med Hyg. 1986 Jan;35(1):37–44. doi: 10.4269/ajtmh.1986.35.37. [DOI] [PubMed] [Google Scholar]
  43. Tabas I., Tall A. R. Mechanism of the association of HDL3 with endothelial cells, smooth muscle cells, and fibroblasts. Evidence against the role of specific ligand and receptor proteins. J Biol Chem. 1984 Nov 25;259(22):13897–13905. [PubMed] [Google Scholar]
  44. Tauber J. P., Goldminz D., Vlodavsky I., Gospodarowicz D. The interaction of the high-density lipoprotein with cultured cells of bovine vascular endothelium. Eur J Biochem. 1981 Oct;119(2):317–325. doi: 10.1111/j.1432-1033.1981.tb05611.x. [DOI] [PubMed] [Google Scholar]
  45. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  47. Vial H. J., Thuet M. J., Broussal J. L., Philippot J. R. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways. J Parasitol. 1982 Jun;68(3):379–391. [PubMed] [Google Scholar]
  48. Vial H. J., Thuet M. J., Philippot J. R. Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J Protozool. 1982 May;29(2):258–263. doi: 10.1111/j.1550-7408.1982.tb04023.x. [DOI] [PubMed] [Google Scholar]
  49. Willet G. P., Canfield C. J. Plasmodium falciparum: continuous cultivation of erythrocyte stages in plasma-free culture medium. Exp Parasitol. 1984 Feb;57(1):76–80. doi: 10.1016/0014-4894(84)90065-1. [DOI] [PubMed] [Google Scholar]
  50. Zachowski A., Favre E., Cribier S., Hervé P., Devaux P. F. Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry. 1986 May 6;25(9):2585–2590. doi: 10.1021/bi00357a046. [DOI] [PubMed] [Google Scholar]
  51. Zolg J. W., MacLeod A. J., Dickson I. H., Scaife J. G. Plasmodium falciparum: modifications of the in vitro culture conditions improving parasitic yields. J Parasitol. 1982 Dec;68(6):1072–1080. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES