Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jan 2;112(2):323–333. doi: 10.1083/jcb.112.2.323

Microglial mitogens are produced in the developing and injured mammalian brain

PMCID: PMC2288822  PMID: 1988464

Abstract

The central nervous system produces growth factors that stimulate proliferation of ameboid microglia during embryogenesis and after traumatic injury. Two microglial mitogens (MMs) are recovered from the brain of newborn rat. MM1 has an approximate molecular mass of 50 kD and a pI of approximately 6.8; MM2 has a molecular mass of 22 kD and a pI of approximately 5.2. These trypsin-sensitive proteins show specificity of action upon glia in vitro serving as growth factors for ameboid microglia but not astroglia or oligodendroglia. Although the MMs did not stimulate proliferation of blood monocytes or resident peritoneal macrophage, MM1 shows granulocyte macrophage colony- stimulating activity when tested upon bone marrow progenitor cells. Microglial mitogens may help to control brain mononuclear phagocytes in vivo. The MMs first appear in the cerebral cortex of rat during early development with peak levels around embryonic day E-20, a period of microglial proliferation. Microglial mitogens are also produced by traumatized brain of adult rats within 2 d after injury. When infused into the cerebral cortex, MM1 and MM2 elicit large numbers of mononuclear phagocytes at the site of injection. In vitro study shows that astroglia from newborn brain secrete MM2. These observations point to the existence of a regulatory system whereby secretion of proteins from brain glia helps to control neighboring inflammatory responses.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  3. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  4. Frei K., Bodmer S., Schwerdel C., Fontana A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol. 1986 Dec 1;137(11):3521–3527. [PubMed] [Google Scholar]
  5. Giulian D., Allen R. L., Baker T. J., Tomozawa Y. Brain peptides and glial growth. I. Glia-promoting factors as regulators of gliogenesis in the developing and injured central nervous system. J Cell Biol. 1986 Mar;102(3):803–811. doi: 10.1083/jcb.102.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res. 1987;18(1):155-71, 132-3. doi: 10.1002/jnr.490180123. [DOI] [PubMed] [Google Scholar]
  7. Giulian D., Baker T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci. 1986 Aug;6(8):2163–2178. doi: 10.1523/JNEUROSCI.06-08-02163.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giulian D., Baker T. J. Peptides released by ameboid microglia regulate astroglial proliferation. J Cell Biol. 1985 Dec;101(6):2411–2415. doi: 10.1083/jcb.101.6.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Giulian D., Baker T. J., Shih L. C., Lachman L. B. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med. 1986 Aug 1;164(2):594–604. doi: 10.1084/jem.164.2.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giulian D., Chen J., Ingeman J. E., George J. K., Noponen M. The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci. 1989 Dec;9(12):4416–4429. doi: 10.1523/JNEUROSCI.09-12-04416.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giulian D., Ingeman J. E. Colony-stimulating factors as promoters of ameboid microglia. J Neurosci. 1988 Dec;8(12):4707–4717. doi: 10.1523/JNEUROSCI.08-12-04707.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giulian D., Lachman L. B. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985 Apr 26;228(4698):497–499. doi: 10.1126/science.3872478. [DOI] [PubMed] [Google Scholar]
  13. Giulian D., Robertson C. Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol. 1990 Jan;27(1):33–42. doi: 10.1002/ana.410270107. [DOI] [PubMed] [Google Scholar]
  14. Giulian D., Woodward J., Young D. G., Krebs J. F., Lachman L. B. Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci. 1988 Jul;8(7):2485–2490. doi: 10.1523/JNEUROSCI.08-07-02485.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giulian D., Young D. G. Brain peptides and glial growth. II. Identification of cells that secrete glia-promoting factors. J Cell Biol. 1986 Mar;102(3):812–820. doi: 10.1083/jcb.102.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Giulian D., Young D. G., Woodward J., Brown D. C., Lachman L. B. Interleukin-1 is an astroglial growth factor in the developing brain. J Neurosci. 1988 Feb;8(2):709–714. doi: 10.1523/JNEUROSCI.08-02-00709.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graeber M. B., Tetzlaff W., Streit W. J., Kreutzberg G. W. Microglial cells but not astrocytes undergo mitosis following rat facial nerve axotomy. Neurosci Lett. 1988 Mar 10;85(3):317–321. doi: 10.1016/0304-3940(88)90585-x. [DOI] [PubMed] [Google Scholar]
  18. Leutz A., Schachner M. Epidermal growth factor stimulates DNA-synthesis of astrocytes in primary cerebellar cultures. Cell Tissue Res. 1981;220(2):393–404. doi: 10.1007/BF00210517. [DOI] [PubMed] [Google Scholar]
  19. Lim R., Miller J. F., Zaheer A. Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci U S A. 1989 May;86(10):3901–3905. doi: 10.1073/pnas.86.10.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Loret C., Sensenbrenner M., Labourdette G. Differential phenotypic expression induced in cultured rat astroblasts by acidic fibroblast growth factor, epidermal growth factor, and thrombin. J Biol Chem. 1989 May 15;264(14):8319–8327. [PubMed] [Google Scholar]
  21. Matsumoto Y., Ikuta F. Appearance and distribution of fetal brain macrophages in mice. Immunohistochemical study with a monoclonal antibody. Cell Tissue Res. 1985;239(2):271–278. doi: 10.1007/BF00218004. [DOI] [PubMed] [Google Scholar]
  22. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McMorris F. A., Dubois-Dalcq M. Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res. 1988 Oct-Dec;21(2-4):199–209. doi: 10.1002/jnr.490210212. [DOI] [PubMed] [Google Scholar]
  24. Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 Jul 5;229(4708):16–22. doi: 10.1126/science.2990035. [DOI] [PubMed] [Google Scholar]
  25. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  26. Nicola N. A., Burgess A. W., Metcalf D. Similar molecular properties of granulocyte-macrophage colony-stimulating factors produced by different mouse organs in vitro and in vivo. J Biol Chem. 1979 Jun 25;254(12):5290–5299. [PubMed] [Google Scholar]
  27. Pitas R. E., Innerarity T. L., Weinstein J. N., Mahley R. W. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. doi: 10.1161/01.atv.1.3.177. [DOI] [PubMed] [Google Scholar]
  28. Pruss R. M., Bartlett P. F., Gavrilovic J., Lisak R. P., Rattray S. Mitogens for glial cells: a comparison of the response of cultured astrocytes, oligodendrocytes and Schwann cells. Brain Res. 1981 Aug;254(1):19–35. doi: 10.1016/0165-3806(81)90056-0. [DOI] [PubMed] [Google Scholar]
  29. Richardson W. D., Pringle N., Mosley M. J., Westermark B., Dubois-Dalcq M. A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell. 1988 Apr 22;53(2):309–319. doi: 10.1016/0092-8674(88)90392-3. [DOI] [PubMed] [Google Scholar]
  30. Wong D. M., Varesio L. Depletion of macrophages from heterogeneous cell populations by the use of carbonyl iron. Methods Enzymol. 1984;108:307–313. doi: 10.1016/s0076-6879(84)08097-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES