Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Feb 1;112(3):457–467. doi: 10.1083/jcb.112.3.457

The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition

PMCID: PMC2288828  PMID: 1704008

Abstract

The present experiments were designed to clarify the relationship between cAMP elevation, proliferation and differentiation in Schwann cells. They were carried out on short-term cultures of cells obtained from neonatal rat sciatic nerves. It was found that the myelin-related phenotype was expressed in response to agents that elevate or mimic intracellular cAMP (forskolin, cholera toxin, cAMP analogues), provided cell division was absent. This phenotype included upregulation of the major myelin protein P0 and downregulation of GFAP, N-CAM, A5E3, and NGF receptor. In contrast, when cells were cultured in conditions where cell division occurred, elevation of intracellular cAMP produced an alternative response, characterized by DNA synthesis and absence of myelin-related differentiation. The cAMP mediated induction of an early Schwann cell antigen, 04, followed a different pattern since it was induced equally in dividing and nondividing cells. These observations are consistent with the proposal that during development of the rat sciatic nerve: (a) cAMP elevation, possibly induced by axon-associated factors, is a primary signal responsible for the induction of 04 expression in proliferating Schwann cells during the premyelination period; (b) subsequent withdrawal of cells associated with the larger axons from the cell cycle acts as a permissive secondary signal for induction of myelination, since in quiescent cells the ongoing cAMP elevation will trigger myelination.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appenzeller O., Palmer G. The cyclic AMP (adenosine 3',5'-phosphate) content of sciatic nerve: changes after nerve crush. Brain Res. 1972 Jul 20;42(2):521–524. doi: 10.1016/0006-8993(72)90553-7. [DOI] [PubMed] [Google Scholar]
  2. Baron-Van Evercooren A., Gansmüller A., Gumpel M., Baumann N., Kleinman H. K. Schwann cell differentiation in vitro: extracellular matrix deposition and interaction. Dev Neurosci. 1986;8(3):182–196. doi: 10.1159/000112252. [DOI] [PubMed] [Google Scholar]
  3. Brockes J. P., Fields K. L., Raff M. C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979 Apr 6;165(1):105–118. doi: 10.1016/0006-8993(79)90048-9. [DOI] [PubMed] [Google Scholar]
  4. Brockes J. P., Raff M. C., Nishiguchi D. J., Winter J. Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins. J Neurocytol. 1980 Feb;9(1):67–77. doi: 10.1007/BF01205227. [DOI] [PubMed] [Google Scholar]
  5. Bunge R. P., Bunge M. B., Eldridge C. F. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–328. doi: 10.1146/annurev.ne.09.030186.001513. [DOI] [PubMed] [Google Scholar]
  6. Cornbrooks C. J., Carey D. J., McDonald J. A., Timpl R., Bunge R. P. In vivo and in vitro observations on laminin production by Schwann cells. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3850–3854. doi: 10.1073/pnas.80.12.3850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniloff J. K., Levi G., Grumet M., Rieger F., Edelman G. M. Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair. J Cell Biol. 1986 Sep;103(3):929–945. doi: 10.1083/jcb.103.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis J. B., Stroobant P. Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J Cell Biol. 1990 Apr;110(4):1353–1360. doi: 10.1083/jcb.110.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eccleston P. A., Bannerman P. G., Pleasure D. E., Winter J., Mirsky R., Jessen K. R. Control of peripheral glial cell proliferation: enteric neurons exert an inhibitory influence on Schwann cell and enteric glial cell DNA synthesis in culture. Development. 1989 Sep;107(1):107–112. doi: 10.1242/dev.107.1.107. [DOI] [PubMed] [Google Scholar]
  10. Eccleston P. A., Collarini E. J., Jessen K. R., Mirsky R., Richardson W. D. Schwann Cells Secrete a PDGF-like Factor: Evidence for an Autocrine Growth Mechanism involving PDGF. Eur J Neurosci. 1990 Oct;2(11):985–992. doi: 10.1111/j.1460-9568.1990.tb00011.x. [DOI] [PubMed] [Google Scholar]
  11. Eccleston P. A., Jessen K. R., Mirsky R. Control of peripheral glial cell proliferation: a comparison of the division rates of enteric glia and Schwann cells and their response to mitogens. Dev Biol. 1987 Dec;124(2):409–417. doi: 10.1016/0012-1606(87)90493-3. [DOI] [PubMed] [Google Scholar]
  12. Eccleston P. A., Jessen K. R., Mirsky R. Transforming growth factor-beta and gamma-interferon have dual effects on growth of peripheral glia. J Neurosci Res. 1989 Dec;24(4):524–530. doi: 10.1002/jnr.490240410. [DOI] [PubMed] [Google Scholar]
  13. Eccleston P. A., Mirsky R., Jessen K. R. Type I collagen preparations inhibit DNA synthesis in glial cells of the peripheral nervous system. Exp Cell Res. 1989 May;182(1):173–185. doi: 10.1016/0014-4827(89)90289-9. [DOI] [PubMed] [Google Scholar]
  14. Gennarini G., Rougon G., Deagostini-Bazin H., Hirn M., Goridis C. Studies on the transmembrane disposition of the neural cell adhesion molecule N-CAM. A monoclonal antibody recognizing a cytoplasmic domain and evidence for the presence of phosphoserine residues. Eur J Biochem. 1984 Jul 2;142(1):57–64. doi: 10.1111/j.1432-1033.1984.tb08250.x. [DOI] [PubMed] [Google Scholar]
  15. Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science. 1982 Oct 29;218(4571):474–475. doi: 10.1126/science.7123245. [DOI] [PubMed] [Google Scholar]
  16. Jessen K. R., Mirsky R., Morgan L. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves. J Neurosci. 1987 Oct;7(10):3362–3369. doi: 10.1523/JNEUROSCI.07-10-03362.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jessen K. R., Mirsky R. Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J Neurocytol. 1984 Dec;13(6):923–934. doi: 10.1007/BF01148594. [DOI] [PubMed] [Google Scholar]
  18. Jessen K. R., Morgan L., Brammer M., Mirsky R. Galactocerebroside is expressed by non-myelin-forming Schwann cells in situ. J Cell Biol. 1985 Sep;101(3):1135–1143. doi: 10.1083/jcb.101.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jessen K. R., Morgan L., Stewart H. J., Mirsky R. Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development. 1990 May;109(1):91–103. doi: 10.1242/dev.109.1.91. [DOI] [PubMed] [Google Scholar]
  20. Jessen K. R., Thorpe R., Mirsky R. Molecular identity, distribution and heterogeneity of glial fibrillary acidic protein: an immunoblotting and immunohistochemical study of Schwann cells, satellite cells, enteric glia and astrocytes. J Neurocytol. 1984 Apr;13(2):187–200. doi: 10.1007/BF01148114. [DOI] [PubMed] [Google Scholar]
  21. Lemke G., Chao M. Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development. 1988 Mar;102(3):499–504. doi: 10.1242/dev.102.3.499. [DOI] [PubMed] [Google Scholar]
  22. Ljungdahl A., Olsson T., Van der Meide P. H., Holmdahl R., Klareskog L., Höjeberg B. Interferon-gamma-like immunoreactivity in certain neurons of the central and peripheral nervous system. J Neurosci Res. 1989 Nov;24(3):451–456. doi: 10.1002/jnr.490240316. [DOI] [PubMed] [Google Scholar]
  23. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and myelin-associated glycoprotein) in regenerating adult mouse sciatic nerve. J Cell Biol. 1988 May;106(5):1735–1746. doi: 10.1083/jcb.106.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meador-Woodruff J. H., Lewis B. L., DeVries G. H. Cyclic AMP and calcium as potential mediators of stimulation of cultured Schwann cell proliferation by axolemma-enriched and myelin-enriched membrane fractions. Biochem Biophys Res Commun. 1984 Jul 18;122(1):373–380. doi: 10.1016/0006-291x(84)90485-6. [DOI] [PubMed] [Google Scholar]
  26. Mirsky R., Dubois C., Morgan L., Jessen K. R. 04 and A007-sulfatide antibodies bind to embryonic Schwann cells prior to the appearance of galactocerebroside; regulation of the antigen by axon-Schwann cell signals and cyclic AMP. Development. 1990 May;109(1):105–116. doi: 10.1242/dev.109.1.105. [DOI] [PubMed] [Google Scholar]
  27. Mirsky R., Gavrilovic J., Bannerman P., Winter J., Jessen K. R. Characterization of a plasma membrane protein present in non-myelin-forming PNS and CNS glia, a subpopulation of PNS neurons, perineurial cells and smooth muscle in adult rats. Cell Tissue Res. 1985;240(3):723–733. doi: 10.1007/BF00216361. [DOI] [PubMed] [Google Scholar]
  28. Mirsky R., Jessen K. R., Schachner M., Goridis C. Distribution of the adhesion molecules N-CAM and L1 on peripheral neurons and glia in adult rats. J Neurocytol. 1986 Dec;15(6):799–815. doi: 10.1007/BF01625196. [DOI] [PubMed] [Google Scholar]
  29. Mirsky R., Winter J., Abney E. R., Pruss R. M., Gavrilovic J., Raff M. C. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J Cell Biol. 1980 Mar;84(3):483–494. doi: 10.1083/jcb.84.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mokuno K., Sobue G., Reddy U. R., Wurzer J., Kreider B., Hotta H., Baron P., Ross A. H., Pleasure D. Regulation of Schwann cell nerve growth factor receptor by cyclic adenosine 3',5'-monophosphate. J Neurosci Res. 1988 Oct-Dec;21(2-4):465–472. doi: 10.1002/jnr.490210237. [DOI] [PubMed] [Google Scholar]
  31. Monuki E. S., Weinmaster G., Kuhn R., Lemke G. SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron. 1989 Dec;3(6):783–793. doi: 10.1016/0896-6273(89)90247-x. [DOI] [PubMed] [Google Scholar]
  32. Muir D., Varon S., Manthorpe M. Schwann cell proliferation in vitro is under negative autocrine control. J Cell Biol. 1990 Dec;111(6 Pt 1):2663–2671. doi: 10.1083/jcb.111.6.2663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nieke J., Schachner M. Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve. Differentiation. 1985;30(2):141–151. doi: 10.1111/j.1432-0436.1985.tb00525.x. [DOI] [PubMed] [Google Scholar]
  34. Peng W. W., Bressler J. P., Tiffany-Castiglioni E., de Vellis J. Development of a monoclonal antibody against a tumor-associated antigen. Science. 1982 Feb 26;215(4536):1102–1104. doi: 10.1126/science.7063842. [DOI] [PubMed] [Google Scholar]
  35. Perry V. H., Brown M. C., Gordon S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med. 1987 Apr 1;165(4):1218–1223. doi: 10.1084/jem.165.4.1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Poduslo J. F., Dyck P. J., Berg C. T. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection. J Neurochem. 1985 Feb;44(2):388–400. doi: 10.1111/j.1471-4159.1985.tb05428.x. [DOI] [PubMed] [Google Scholar]
  37. Porter S., Clark M. B., Glaser L., Bunge R. P. Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J Neurosci. 1986 Oct;6(10):3070–3078. doi: 10.1523/JNEUROSCI.06-10-03070.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Porter S., Glaser L., Bunge R. P. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7768–7772. doi: 10.1073/pnas.84.21.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Raff M. C., Abney E., Brockes J. P., Hornby-Smith A. Schwann cell growth factors. Cell. 1978 Nov;15(3):813–822. doi: 10.1016/0092-8674(78)90266-0. [DOI] [PubMed] [Google Scholar]
  40. Raff M. C., Hornby-Smith A., Brockes J. P. Cyclic AMP as a mitogenic signal for cultured rat Schwann cells. Nature. 1978 Jun 22;273(5664):672–673. doi: 10.1038/273672a0. [DOI] [PubMed] [Google Scholar]
  41. Raivich G., Kreutzberg G. W. Expression of growth factor receptors in injured nervous tissue. I. Axotomy leads to a shift in the cellular distribution of specific beta-nerve growth factor binding in the injured and regenerating PNS. J Neurocytol. 1987 Oct;16(5):689–700. doi: 10.1007/BF01637660. [DOI] [PubMed] [Google Scholar]
  42. Ranscht B., Clapshaw P. A., Price J., Noble M., Seifert W. Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2709–2713. doi: 10.1073/pnas.79.8.2709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ratner N., Glaser L., Bunge R. P. PC12 cells as a source of neurite-derived cell surface mitogen, which stimulates Schwann cell division. J Cell Biol. 1984 Mar;98(3):1150–1155. doi: 10.1083/jcb.98.3.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ratner N., Hong D. M., Lieberman M. A., Bunge R. P., Glaser L. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6992–6996. doi: 10.1073/pnas.85.18.6992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ridley A. J., Davis J. B., Stroobant P., Land H. Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol. 1989 Dec;109(6 Pt 2):3419–3424. doi: 10.1083/jcb.109.6.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Salzer J. L., Williams A. K., Glaser L., Bunge R. P. Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol. 1980 Mar;84(3):753–766. doi: 10.1083/jcb.84.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shuman S., Hardy M., Sobue G., Pleasure D. A cyclic AMP analogue induces synthesis of a myelin-specific glycoprotein by cultured Schwann cells. J Neurochem. 1988 Jan;50(1):190–194. doi: 10.1111/j.1471-4159.1988.tb13248.x. [DOI] [PubMed] [Google Scholar]
  48. Sobue G., Pleasure D. Schwann cell galactocerebroside induced by derivatives of adenosine 3',5'-monophosphate. Science. 1984 Apr 6;224(4644):72–74. doi: 10.1126/science.6322307. [DOI] [PubMed] [Google Scholar]
  49. Sobue G., Shuman S., Pleasure D. Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res. 1986 Jan 1;362(1):23–32. doi: 10.1016/0006-8993(86)91394-6. [DOI] [PubMed] [Google Scholar]
  50. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  51. Taniuchi M., Johnson E. M., Jr Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor. J Cell Biol. 1985 Sep;101(3):1100–1106. doi: 10.1083/jcb.101.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tennekoon G. I., Yoshino J., Peden K. W., Bigbee J., Rutkowski J. L., Kishimoto Y., DeVries G. H., McKhann G. M. Transfection of neonatal rat Schwann cells with SV-40 large T antigen gene under control of the metallothionein promoter. J Cell Biol. 1987 Nov;105(5):2315–2325. doi: 10.1083/jcb.105.5.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Trapp B. D., Itoyama Y., Sternberger N. H., Quarles R. H., Webster H. Immunocytochemical localization of P0 protein in Golgi complex membranes and myelin of developing rat Schwann cells. J Cell Biol. 1981 Jul;90(1):1–6. doi: 10.1083/jcb.90.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weinmaster G., Lemke G. Cell-specific cyclic AMP-mediated induction of the PDGF receptor. EMBO J. 1990 Mar;9(3):915–920. doi: 10.1002/j.1460-2075.1990.tb08189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES