Abstract
To map structural and functional epitopes of the cytomatrix protein plectin, a set of mAbs was prepared by immunization of mice. Using immunoblot analysis of plectin fragments obtained after limited digestion with various proteases, two groups of mAbs were distinguished. The epitopes of one group (1) were located on a 130-kD terminal segment of the plectin 300-kD polypeptide chain, whereas those of the other group (2) bound within a 40kD segment confined to a central domain of the polypeptide chain. Domains containing the epitopes of group 2 mAbs were shown to include in vitro phosphorylation sites for kinase A, whereas kinase C phosphorylation sites were found on the same terminal segment that contained group 1 mAb epitopes. Rotary shadowing EM of mAb (Fab fragment) -decorated plectin molecules at various states of aggregation, ranging from characteristic dumbbell- shaped single molecules to highly complex multimeric structures, revealed that the epitopes of group 1 as well as those of group 2 mAbs were located on plectin's roughly 200-nm long rod domain interlinking its two globular end domains. Epitopes of group 1 mAbs were localized within a region near the center of the rod, those of group 2 in more peripheral sections near the globular end domains. Solid-phase binding assays carried out in the presence of Fab fragments of mAbs demonstrated an interference of certain group 1 mAbs in the interactions of plectin with vimentin and lamin B. On the other hand, plectin's self-interaction was inhibited mainly by Fab fragments with epitopes in the peripheral rod domain (group 2 mAbs). Together, these results suggested that the molecular binding sites of plectin for vimentin and lamin B, as well as the phosphorylation sites for kinase C, were confined to a defined central section of plectin's rod domain. In addition, they suggest an involvement of peripheral rod sections in plectin self-association.
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Foisner R., Leichtfried F. E., Herrmann H., Small J. V., Lawson D., Wiche G. Cytoskeleton-associated plectin: in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J Cell Biol. 1988 Mar;106(3):723–733. doi: 10.1083/jcb.106.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foisner R., Wiche G. Structure and hydrodynamic properties of plectin molecules. J Mol Biol. 1987 Dec 5;198(3):515–531. doi: 10.1016/0022-2836(87)90297-x. [DOI] [PubMed] [Google Scholar]
- Furtner R., Wiche G. Binding specificities of purified porcine brain alpha- and beta-tubulin subunits and of microtubule-associated proteins 1 and 2 examined by electron microscopy and solid-phase binding assays. Eur J Cell Biol. 1987 Dec;45(1):1–8. [PubMed] [Google Scholar]
- Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
- Herrmann H., Wiche G. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J Biol Chem. 1987 Jan 25;262(3):1320–1325. [PubMed] [Google Scholar]
- Herrmann H., Wiche G. Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells. J Biol Chem. 1983 Dec 10;258(23):14610–14618. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Pytela R., Wiche G. High molecular weight polypeptides (270,000-340,000) from cultured cells are related to hog brain microtubule-associated proteins but copurify with intermediate filaments. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4808–4812. doi: 10.1073/pnas.77.8.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
- Weitzer G., Wiche G. Plectin from bovine lenses. Chemical properties, structural analysis and initial identification of interaction partners. Eur J Biochem. 1987 Nov 16;169(1):41–52. doi: 10.1111/j.1432-1033.1987.tb13578.x. [DOI] [PubMed] [Google Scholar]
- Wiche G., Herrmann H., Leichtfried F., Pytela R. Plectin: a high-molecular-weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the vimentin type. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):475–482. doi: 10.1101/sqb.1982.046.01.044. [DOI] [PubMed] [Google Scholar]
- Wiche G. Plectin: general overview and appraisal of its potential role as a subunit protein of the cytomatrix. Crit Rev Biochem Mol Biol. 1989;24(1):41–67. doi: 10.3109/10409238909082551. [DOI] [PubMed] [Google Scholar]