Abstract
Conditions were defined for promoting cell growth, hypertrophy, and extracellular matrix mineralization of a culture system derived from embryonic chick vertebral chondrocytes. Ascorbic acid supplementation by itself led to the hypertrophic phenotype as assessed by respective 10- and 15-fold increases in alkaline phosphatase enzyme activity and type X synthesis. Maximal extracellular matrix mineralization was obtained, however, when cultures were grown in a nutrient-enriched medium supplemented with both ascorbic acid and 20 mM beta- glycerophosphate. Temporal studies over a 3-wk period showed a 3-4-fold increase in DNA accompanied by a nearly constant DNA to protein ratio. In this period, total collagen increased from 3 to 20% of the cell layer protein; total calcium and phosphorus contents increased 15-20- fold. Proteoglycan synthesis was maximal until day 12 but thereafter showed a fourfold decrease. In contrast, total collagen synthesis showed a greater than 10-fold increase until day 18, a result suggesting that collagen synthesis was replacing proteoglycan synthesis during cellular hypertrophy. Separate analysis of individual collagen types demonstrated a low level of type I collagen synthesis throughout the 21-d time course. Collagen types II and X synthesis increased during the first 2 wk of culture; thereafter, collagen type II synthesis decreased while collagen type X synthesis continued to rise. Type IX synthesis remained at undetectable levels throughout the time course. The levels of collagen types I, II, IX, and X mRNA and the large proteoglycan core protein mRNA paralleled their levels of synthesis, data indicating pretranslational control of synthesis. Ultrastructural examination revealed cellular and extracellular morphology similar to that for a developing hypertrophic phenotype in vivo. Chondrocytes in lacunae were surrounded by a well-formed extracellular matrix of randomly distributed collagen type II fibrils (approximately 20-nm diam) and extensive proteoglycan. Numerous vesicular structures could be detected. Cultures mineralized reproducibly and crystals were located in extracellular matrices, principally associated with collagen fibrils. There was no clear evidence of mineral association with extracellular vesicles. The mineral was composed of calcium and phosphorus on electron probe microanalysis and was identified as a very poorly crystalline hydroxyapatite on electron diffraction. In summary, these data suggest that this culture system consists of chondrocytes which undergo differentiation in vitro as assessed by their elevated levels of alkaline phosphatase and type X collagen and their ultrastructural appearance.(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronow M. A., Gerstenfeld L. C., Owen T. A., Tassinari M. S., Stein G. S., Lian J. B. Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Physiol. 1990 May;143(2):213–221. doi: 10.1002/jcp.1041430203. [DOI] [PubMed] [Google Scholar]
- Bellows C. G., Aubin J. E., Heersche J. N., Antosz M. E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986 Mar;38(3):143–154. doi: 10.1007/BF02556874. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bruckner P., Hörler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989 Nov;109(5):2537–2545. doi: 10.1083/jcb.109.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckwalter J. A. Proteoglycan structure in calcifying cartilage. Clin Orthop Relat Res. 1983 Jan-Feb;(172):207–232. [PubMed] [Google Scholar]
- Campo R. D., Romano J. E. Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int. 1986 Sep;39(3):175–184. doi: 10.1007/BF02555115. [DOI] [PubMed] [Google Scholar]
- Capasso O., Tajana G., Cancedda R. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae. Mol Cell Biol. 1984 Jun;4(6):1163–1168. doi: 10.1128/mcb.4.6.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniel J. C., Pauli B. U., Kuettner K. E. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. III. Effects of ascorbate. J Cell Biol. 1984 Dec;99(6):1960–1969. doi: 10.1083/jcb.99.6.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn D. M., Franzblau C. Effects of ascorbate on insoluble elastin accumulation and cross-link formation in rabbit pulmonary artery smooth muscle cultures. Biochemistry. 1982 Aug 31;21(18):4195–4202. doi: 10.1021/bi00261a001. [DOI] [PubMed] [Google Scholar]
- Ecarot-Charrier B., Glorieux F. H., van der Rest M., Pereira G. Osteoblasts isolated from mouse calvaria initiate matrix mineralization in culture. J Cell Biol. 1983 Mar;96(3):639–643. doi: 10.1083/jcb.96.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich M. G., Armstrong A. L., Neuman R. G., Davis M. W., Mankin H. J. Patterns of proteoglycan degradation by a neutral protease from human growth-plate epiphyseal cartilage. J Bone Joint Surg Am. 1982 Dec;64(9):1350–1354. [PubMed] [Google Scholar]
- Finer M. H., Gerstenfeld L. C., Young D., Doty P., Boedtker H. Collagen expression in embryonic chicken chondrocytes treated with phorbol myristate acetate. Mol Cell Biol. 1985 Jun;5(6):1415–1424. doi: 10.1128/mcb.5.6.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Floyd W. E., 3rd, Zaleske D. J., Schiller A. L., Trahan C., Mankin H. J. Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg Am. 1987 Feb;69(2):185–190. [PubMed] [Google Scholar]
- Gerstenfeld L. C., Chipman S. D., Glowacki J., Lian J. B. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol. 1987 Jul;122(1):49–60. doi: 10.1016/0012-1606(87)90331-9. [DOI] [PubMed] [Google Scholar]
- Gerstenfeld L. C., Chipman S. D., Kelly C. M., Hodgens K. J., Lee D. D., Landis W. J. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J Cell Biol. 1988 Mar;106(3):979–989. doi: 10.1083/jcb.106.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerstenfeld L. C., Crawford D. R., Boedtker H., Doty P. Expression of type I and III collagen genes during differentiation of embryonic chicken myoblasts in culture. Mol Cell Biol. 1984 Aug;4(8):1483–1492. doi: 10.1128/mcb.4.8.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerstenfeld L. C., Finer M. H., Boedtker H. Quantitative analysis of collagen expression in embryonic chick chondrocytes having different developmental fates. J Biol Chem. 1989 Mar 25;264(9):5112–5120. [PubMed] [Google Scholar]
- Gerstenfeld L. C., Gotoh Y., McKee M. D., Nanci A., Landis W. J., Glimcher M. J. Expression and ultrastructural immunolocalization of a major 66 kDa phosphoprotein synthesized by chicken osteoblasts during mineralization in vitro. Anat Rec. 1990 Sep;228(1):93–103. doi: 10.1002/ar.1092280113. [DOI] [PubMed] [Google Scholar]
- Gerstenfeld L. C., Kelly C. M., Von Deck M., Lian J. B. Effect of 1,25-dihydroxyvitamin D3 on induction of chondrocyte maturation in culture: extracellular matrix gene expression and morphology. Endocrinology. 1990 Mar;126(3):1599–1609. doi: 10.1210/endo-126-3-1599. [DOI] [PubMed] [Google Scholar]
- Gibson G. J., Beaumont B. W., Flint M. H. Synthesis of a low molecular weight collagen by chondrocytes from the presumptive calcification region of the embryonic chick sterna: the influence of culture with collagen gels. J Cell Biol. 1984 Jul;99(1 Pt 1):208–216. doi: 10.1083/jcb.99.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson G. J., Schor S. L., Grant M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J Cell Biol. 1982 Jun;93(3):767–774. doi: 10.1083/jcb.93.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habuchi H., Conrad H. E., Glaser J. H. Coordinate regulation of collagen and alkaline phosphatase levels in chick embryo chondrocytes. J Biol Chem. 1985 Oct 25;260(24):13029–13034. [PubMed] [Google Scholar]
- Hall B. K. Earliest evidence of cartilage and bone development in embryonic life. Clin Orthop Relat Res. 1987 Dec;(225):255–272. [PubMed] [Google Scholar]
- Hinek A., Reiner A., Poole A. R. The calcification of cartilage matrix in chondrocyte culture: studies of the C-propeptide of type II collagen (chondrocalcin). J Cell Biol. 1987 May;104(5):1435–1441. doi: 10.1083/jcb.104.5.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunziker E. B., Schenk R. K., Cruz-Orive L. M. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987 Feb;69(2):162–173. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Glimcher M. J. Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res. 1978 May;63(2):188–223. doi: 10.1016/s0022-5320(78)80074-4. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Glimcher M. J. Electron optical and analytical observations of rat growth plate cartilage prepared by ultracryomicrotomy: the failure to detect a mineral phase in matrix vesicles and the identification of heterodispersed particles as the initial solid phase of calcium phosphate deposited in the extracellular matrix. J Ultrastruct Res. 1982 Mar;78(3):227–268. doi: 10.1016/s0022-5320(82)80001-4. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Hodgens K. J. Visualization of sulfur-containing components associated with proliferating chondrocytes from rat epiphyseal growth plate cartilage: possible proteoglycan and collagen co-migration. Anat Rec. 1990 Feb;226(2):153–167. doi: 10.1002/ar.1092260205. [DOI] [PubMed] [Google Scholar]
- Landis W. J., Paine M. C., Glimcher M. J. Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. J Ultrastruct Res. 1977 Apr;59(1):1–30. doi: 10.1016/s0022-5320(77)80025-7. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- Leboy P. S., Shapiro I. M., Uschmann B. D., Oshima O., Lin D. Gene expression in mineralizing chick epiphyseal cartilage. J Biol Chem. 1988 Jun 15;263(17):8515–8520. [PubMed] [Google Scholar]
- Leboy P. S., Vaias L., Uschmann B., Golub E., Adams S. L., Pacifici M. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. J Biol Chem. 1989 Oct 15;264(29):17281–17286. [PubMed] [Google Scholar]
- Lehrach H., Frischauf A. M., Hanahan D., Wozney J., Fuller F., Boedtker H. Construction and characterization of pro alpha 1 collagen complementary deoxyribonucleic acid clones. Biochemistry. 1979 Jul 10;18(14):3146–3152. doi: 10.2196/47873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehrach H., Frischauf A. M., Hanahan D., Wozney J., Fuller F., Crkvenjakov R., Boedtker H., Doty P. Construction and characterization of a 2.5-kilobase procollagen clone. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5417–5421. doi: 10.1073/pnas.75.11.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linsenmayer T. F., Gibney E., Schmid T. M. Segmental appearance of type X collagen in the developing avian notochord. Dev Biol. 1986 Feb;113(2):467–473. doi: 10.1016/0012-1606(86)90182-x. [DOI] [PubMed] [Google Scholar]
- Lyons B. L., Schwarz R. I. Ascorbate stimulation of PAT cells causes an increase in transcription rates and a decrease in degradation rates of procollagen mRNA. Nucleic Acids Res. 1984 Mar 12;12(5):2569–2579. doi: 10.1093/nar/12.5.2569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto H., DeBolt K., Shapiro I. M. Adenine, guanine, and inosine nucleotides of chick growth cartilage: relationship between energy status and the mineralization process. J Bone Miner Res. 1988 Jun;3(3):347–352. doi: 10.1002/jbmr.5650030315. [DOI] [PubMed] [Google Scholar]
- Mikuni-Takagaki Y., Toole B. P. Shedding of hyaluronate from the cell surface of Rous sarcoma virus-transformed chondrocytes. J Biol Chem. 1979 Sep 10;254(17):8409–8415. [PubMed] [Google Scholar]
- Nimni M. E. Metabolic pathways and control mechanisms involved in the biosynthesis and turnover of collagen in normal and pathological connective tissues. J Oral Pathol. 1973;2(4):175–202. doi: 10.1111/j.1600-0714.1973.tb01682.x. [DOI] [PubMed] [Google Scholar]
- Ninomiya Y., Gordon M., van der Rest M., Schmid T., Linsenmayer T., Olsen B. R. The developmentally regulated type X collagen gene contains a long open reading frame without introns. J Biol Chem. 1986 Apr 15;261(11):5041–5050. [PubMed] [Google Scholar]
- Nishimura I., Muragaki Y., Olsen B. R. Tissue-specific forms of type IX collagen-proteoglycan arise from the use of two widely separated promoters. J Biol Chem. 1989 Nov 25;264(33):20033–20041. [PubMed] [Google Scholar]
- Poole A. R., Matsui Y., Hinek A., Lee E. R. Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec. 1989 Jun;224(2):167–179. doi: 10.1002/ar.1092240207. [DOI] [PubMed] [Google Scholar]
- Poole A. R., Pidoux I. Immunoelectron microscopic studies of type X collagen in endochondral ossification. J Cell Biol. 1989 Nov;109(5):2547–2554. doi: 10.1083/jcb.109.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole A. R., Pidoux I., Rosenberg L. Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol. 1982 Feb;92(2):249–260. doi: 10.1083/jcb.92.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sai S., Tanaka T., Kosher R. A., Tanzer M. L. Cloning and sequence analysis of a partial cDNA for chicken cartilage proteoglycan core protein. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5081–5085. doi: 10.1073/pnas.83.14.5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandell L. J., Daniel J. C. Effects of ascorbic acid on collagen mRNA levels in short term chondrocyte cultures. Connect Tissue Res. 1988;17(1):11–22. doi: 10.3109/03008208808992790. [DOI] [PubMed] [Google Scholar]
- Schmid T. M., Conrad H. E. A unique low molecular weight collagen secreted by cultured chick embryo chondrocytes. J Biol Chem. 1982 Oct 25;257(20):12444–12450. [PubMed] [Google Scholar]
- Schmid T. M., Linsenmayer T. F. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985 Feb;107(2):373–381. doi: 10.1016/0012-1606(85)90319-7. [DOI] [PubMed] [Google Scholar]
- Schwartz E., Bienkowski R. S., Coltoff-Schiller B., Goldfischer S., Blumenfeld O. O. Changes in the components of extracellular matrix and in growth properties of cultured aortic smooth muscle cells upon ascorbate feeding. J Cell Biol. 1982 Feb;92(2):462–470. doi: 10.1083/jcb.92.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz R. I., Kleinman P., Owens N. Ascorbate can act as an inducer of the collagen pathway because most steps are tightly coupled. Ann N Y Acad Sci. 1987;498:172–185. doi: 10.1111/j.1749-6632.1987.tb23760.x. [DOI] [PubMed] [Google Scholar]
- Schwarz R., Colarusso L., Doty P. Maintenance of differentiation in primary cultures of avian tendon cells. Exp Cell Res. 1976 Oct 1;102(1):63–71. doi: 10.1016/0014-4827(76)90299-8. [DOI] [PubMed] [Google Scholar]
- Shapiro F. Epiphyseal disorders. N Engl J Med. 1987 Dec 31;317(27):1702–1710. doi: 10.1056/NEJM198712313172705. [DOI] [PubMed] [Google Scholar]
- Solursh M., Jensen K. L., Reiter R. S., Schmid T. M., Linsenmayer T. F. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes. Dev Biol. 1986 Sep;117(1):90–101. doi: 10.1016/0012-1606(86)90351-9. [DOI] [PubMed] [Google Scholar]
- Solursh M., Jensen K. L., Zanetti N. C., Linsenmayer T. F., Reiter R. S. Extracellular matrix mediates epithelial effects on chondrogenesis in vitro. Dev Biol. 1984 Oct;105(2):451–457. doi: 10.1016/0012-1606(84)90302-6. [DOI] [PubMed] [Google Scholar]
- Svoboda K. K., Nishimura I., Sugrue S. P., Ninomiya Y., Olsen B. R. Embryonic chicken cornea and cartilage synthesize type IX collagen molecules with different amino-terminal domains. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7496–7500. doi: 10.1073/pnas.85.20.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vytásek R. A sensitive fluorometric assay for the determination of DNA. Anal Biochem. 1982 Mar 1;120(2):243–248. doi: 10.1016/0003-2697(82)90342-6. [DOI] [PubMed] [Google Scholar]
- Young M. F., Vogeli G., Nunez A. M., Fernandez M. P., Sullivan M., Sobel M. E. Isolation of cDNA and genomic DNA clones encoding type II collagen. Nucleic Acids Res. 1984 May 25;12(10):4207–4228. doi: 10.1093/nar/12.10.4207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zanetti N. C., Solursh M. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J Cell Biol. 1984 Jul;99(1 Pt 1):115–123. doi: 10.1083/jcb.99.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]