Abstract
Ultrastructural and genetic studies were carried out on the fat body of a female sterile mutant fs(1)1163 to ascertain why yolk protein 1 (YP1) is not secreted from this tissue. Earlier molecular studies demonstrated that (a) normally yolk protein is synthesized in the fat body, secreted into the hemolymph and taken up by the ovary, (b) the 1163 mutation causes a single amino acid substitution in YP1, and (c) females homozygous for the mutation, or heterozygous females raised at 29 degrees C, retain YP1 in the fat body. Ultrastructural analysis in this paper shows that the fat body of these females contains masses of electron-dense material deposited in the subbasement membrane space. This subbasement membrane material (SBMM), which occasionally has a crystalline-like, fibrous component, is found in females whose genotypes include at least one copy of the mutant 1163 gene. These strains include a deletion strain that is hemizygous for the 1163 gene and two strains that are transgenic for the mutant gene. Immunogold studies indicate that SBMM contains yolk protein. We propose that the mutant protein is secreted into the subbasement membrane space, but because of the amino acid substitution in YP1, the oligomers containing YP1 condense into SBMM, which cannot penetrate the basement membrane. The similarity of SBMM and deoxyhemoglobin S fibers is discussed.
Full Text
The Full Text of this article is available as a PDF (5.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bownes M., Hames B. D. Genetic analysis of vitellogenesis in Drosophila melanogaster: the identification of a temperature-sensitive mutation affecting one of the yolk proteins. J Embryol Exp Morphol. 1978 Oct;47:111–120. [PubMed] [Google Scholar]
- Bownes M., Scott A., Shirras A. Dietary components modulate yolk protein gene transcription in Drosophila melanogaster. Development. 1988 May;103(1):119–128. doi: 10.1242/dev.103.1.119. [DOI] [PubMed] [Google Scholar]
- Brennan M. D., Weiner A. J., Goralski T. J., Mahowald A. P. The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev Biol. 1982 Jan;89(1):225–236. doi: 10.1016/0012-1606(82)90309-8. [DOI] [PubMed] [Google Scholar]
- Butterworth F. M., Bodenstein D. Adipose tissue of Drosophila melanogaster. 3. The effect of the ovary on cell growth and the storage of lipid and glycogen in the adult tissue. J Exp Zool. 1968 Feb;167(2):207–217. doi: 10.1002/jez.1401670209. [DOI] [PubMed] [Google Scholar]
- Butterworth F. M., Emerson L., Rasch E. M. Maturation and degeneration of the fat body in the Drosophila larva and pupa as revealed by morphometric analysis. Tissue Cell. 1988;20(2):255–268. doi: 10.1016/0040-8166(88)90047-x. [DOI] [PubMed] [Google Scholar]
- Butterworth F. M., Forrest E. C. Ultrastructure of the preparative phase of cell death in the larval fat body of Drosophila melanogaster. Tissue Cell. 1984;16(2):237–250. doi: 10.1016/0040-8166(84)90047-8. [DOI] [PubMed] [Google Scholar]
- Dice J. F. Molecular determinants of protein half-lives in eukaryotic cells. FASEB J. 1987 Nov;1(5):349–357. doi: 10.1096/fasebj.1.5.2824267. [DOI] [PubMed] [Google Scholar]
- Duncan J. R., Kornfeld S. Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J Cell Biol. 1988 Mar;106(3):617–628. doi: 10.1083/jcb.106.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykes G., Crepeau R. H., Edelstein S. J. Three-dimensional reconstruction of the fibres of sickle cell haemoglobin. Nature. 1978 Apr 6;272(5653):506–510. doi: 10.1038/272506a0. [DOI] [PubMed] [Google Scholar]
- Edelstein S. J., Telford J. N., Crepeau R. H. Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1104–1107. doi: 10.1073/pnas.70.4.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finch J. T., Perutz M. F., Bertles J. F., Döbler J. Structure of sickled erythrocytes and of sickle-cell hemoglobin fibers. Proc Natl Acad Sci U S A. 1973 Mar;70(3):718–722. doi: 10.1073/pnas.70.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog V., Farquhar M. G. Luminal membrane retrieved after exocytosis reaches most golgi cisternae in secretory cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5073–5077. doi: 10.1073/pnas.74.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isaac P. G., Bownes M. Ovarian and fat-body vitellogenin synthesis in Drosophila melanogaster. Eur J Biochem. 1982 Apr;123(3):527–534. doi: 10.1111/j.1432-1033.1982.tb06563.x. [DOI] [PubMed] [Google Scholar]
- Johnson M. B., Butterworth F. M. Maturation and aging of adult fat body and oenocytes in Drosophila as revealed by light microscopic morphometry. J Morphol. 1985 Apr;184(1):51–59. doi: 10.1002/jmor.1051840106. [DOI] [PubMed] [Google Scholar]
- Locke M., Collins J. V. Protein uptake into multivesicular bodies and storage granules in the fat body of an insect. J Cell Biol. 1968 Mar;36(3):453–483. doi: 10.1083/jcb.36.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahowald A. P. Ultrastructural observations on oogenesis in Drosophila. J Morphol. 1972 May;137(1):29–48. doi: 10.1002/jmor.1051370103. [DOI] [PubMed] [Google Scholar]
- Postlethwait J. H., Jowett T. Genetic analysis of the hormonally regulated yolk polypeptide genes in D. melanogaster. Cell. 1980 Jul;20(3):671–678. doi: 10.1016/0092-8674(80)90313-x. [DOI] [PubMed] [Google Scholar]
- Raikhel A. S. Accumulations of membrane-free clathrin-like lattices in the mosquito oocyte. Eur J Cell Biol. 1984 Nov;35(2):279–283. [PubMed] [Google Scholar]
- Rothman J. E., Schmid S. L. Enzymatic recycling of clathrin from coated vesicles. Cell. 1986 Jul 4;46(1):5–9. doi: 10.1016/0092-8674(86)90852-4. [DOI] [PubMed] [Google Scholar]
- Schwartz M. M., Sharon Z., Bidani A. K., Pauli B. U., Lewis E. J. Evidence of glomerular epithelial cell endocytosis in vitro. Lab Invest. 1981 Jun;44(6):502–506. [PubMed] [Google Scholar]
- Seiler M. W., Venkatachalam M. A., Cotran R. S. Glomerular epithelium: structural alterations induced by polycations. Science. 1975 Aug 1;189(4200):390–393. doi: 10.1126/science.1145209. [DOI] [PubMed] [Google Scholar]
- Snider M. D., Rogers O. C. Membrane traffic in animal cells: cellular glycoproteins return to the site of Golgi mannosidase I. J Cell Biol. 1986 Jul;103(1):265–275. doi: 10.1083/jcb.103.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnenburg-Hatzopoulos C., Assel E., Schurek H. J., Stolte H. Glomerular albumin leakage and morphology after neutralization of polyanions. II. Discrepancy of protamine induced albuminuria and fine structure of the glomerular filtration barrier. J Submicrosc Cytol. 1984 Oct;16(4):741–751. [PubMed] [Google Scholar]
- Warren T. G., Brennan M. D., Mahowald A. P. Two processing steps in maturation of vitellogenin polypeptides in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2848–2852. doi: 10.1073/pnas.76.6.2848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J L, Saunders R D, Bownes M, Scott A. Identification of a female-sterile mutation affecting yolk protein 2 in Drosophila melanogaster. Mol Gen Genet. 1987 Sep;209(2):360–365. doi: 10.1007/BF00329666. [DOI] [PubMed] [Google Scholar]