Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Mar 1;112(5):991–1005. doi: 10.1083/jcb.112.5.991

Monoclonal antibodies show that kinase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo

PMCID: PMC2288878  PMID: 1705561

Abstract

To study the role of kinase C phosphorylation in the distribution and function of GAP-43 we have generated a panel of mAbs that distinguish between GAP-43 that has been phosphorylated by kinase C and forms that have not. One class of antibodies, typified by 2G12/C7, reacts with only the phosphorylated form of GAP-43; it recognizes the peptide IQAS(PO4)FR equivalent to residues 38-43 that includes the single kinase C phosphorylation site at serine. Another, exemplified by 10E8/E7, reacts with both phosphorylated and nonphosphorylated forms. We have used the antibodies to study the distribution of kinase C- phosphorylated GAP-43 during axonogenesis and in the adult nervous system. Two major findings emerge. First, there is a lag between the initiation of axon outgrowth and the phosphorylation of GAP-43 by kinase C. The extent of this lag period varies between the different structures studied. In some cases, e.g., the trigeminal nerve, our result suggest that kinase C phosphorylation may be correlated with proximity of the growing axon to its target. Second, kinase C- phosphorylated GAP-43 is always spatially restricted to the distal axon. It is never seen either proximally or in cell bodies, even those with high levels of GAP-43 protein. This result also implies that GAP- 43 is axonally transported in the non-kinase C phosphorylated form. Thus, kinase C phosphorylation of GAP-43 is not required for axon outgrowth or growth cone function per se and may be more related to interactions of the growth cone with its environment.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloyo V. J., Zwiers H., Gispen W. H. Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase. J Neurochem. 1983 Sep;41(3):649–653. doi: 10.1111/j.1471-4159.1983.tb04790.x. [DOI] [PubMed] [Google Scholar]
  2. Apel E. D., Byford M. F., Au D., Walsh K. A., Storm D. R. Identification of the protein kinase C phosphorylation site in neuromodulin. Biochemistry. 1990 Mar 6;29(9):2330–2335. doi: 10.1021/bi00461a017. [DOI] [PubMed] [Google Scholar]
  3. Benowitz L. I., Apostolides P. J., Perrone-Bizzozero N., Finklestein S. P., Zwiers H. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci. 1988 Jan;8(1):339–352. doi: 10.1523/JNEUROSCI.08-01-00339.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benowitz L. I., Perrone-Bizzozero N. I., Finklestein S. P. Molecular properties of the growth-associated protein GAP-43 (B-50). J Neurochem. 1987 May;48(5):1640–1647. doi: 10.1111/j.1471-4159.1987.tb05713.x. [DOI] [PubMed] [Google Scholar]
  5. Bray D., Hollenbeck P. J. Growth cone motility and guidance. Annu Rev Cell Biol. 1988;4:43–61. doi: 10.1146/annurev.cb.04.110188.000355. [DOI] [PubMed] [Google Scholar]
  6. Changelian P. S., Meiri K., Soppet D., Valenza H., Loewy A., Willard M. Purification of the growth-associated protein GAP-43 by reversed phase chromatography: amino acid sequence analysis and cDNA identification. Brain Res. 1990 Mar 5;510(2):259–268. doi: 10.1016/0006-8993(90)91376-r. [DOI] [PubMed] [Google Scholar]
  7. Coggins P. J., Zwiers H. Evidence for a single protein kinase C-mediated phosphorylation site in rat brain protein B-50. J Neurochem. 1989 Dec;53(6):1895–1901. doi: 10.1111/j.1471-4159.1989.tb09259.x. [DOI] [PubMed] [Google Scholar]
  8. Davies A. M., Bandtlow C., Heumann R., Korsching S., Rohrer H., Thoenen H. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. 1987 Mar 26-Apr 1Nature. 326(6111):353–358. doi: 10.1038/326353a0. [DOI] [PubMed] [Google Scholar]
  9. Davies A., Lumsden A. Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion. J Comp Neurol. 1984 Feb 10;223(1):124–137. doi: 10.1002/cne.902230110. [DOI] [PubMed] [Google Scholar]
  10. Dekker L. V., De Graan P. N., De Wit M., Hens J. J., Gispen W. H. Depolarization-induced phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat cortical synaptosomes. J Neurochem. 1990 May;54(5):1645–1652. doi: 10.1111/j.1471-4159.1990.tb01217.x. [DOI] [PubMed] [Google Scholar]
  11. Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. doi: 10.1146/annurev.bi.56.070187.003031. [DOI] [PubMed] [Google Scholar]
  12. Fox E. R. The right way to go. West J Med. 1987 Aug;147(2):225–226. [PMC free article] [PubMed] [Google Scholar]
  13. Gispen W. H., Leunissen J. L., Oestreicher A. B., Verkleij A. J., Zwiers H. Presynaptic localization of B-50 phosphoprotein: the (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res. 1985 Mar 4;328(2):381–385. doi: 10.1016/0006-8993(85)91054-6. [DOI] [PubMed] [Google Scholar]
  14. Glynn B., Colliton J., McDermott J., Witters L. A. Assay of protein kinase C with an N-bromosuccinimide-cleavage fragment of histone H1. Biochem J. 1985 Oct 15;231(2):489–492. doi: 10.1042/bj2310489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gordon-Weeks P. R. Growth at the growth cone. Trends Neurosci. 1989 Jul;12(7):238–240. doi: 10.1016/0166-2236(89)90018-0. [DOI] [PubMed] [Google Scholar]
  16. Gorgels T. G., Van Lookeren Campagne M., Oestreicher A. B., Gribnau A. A., Gispen W. H. B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract. J Neurosci. 1989 Nov;9(11):3861–3869. doi: 10.1523/JNEUROSCI.09-11-03861.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Graziadei P. P., Graziadei G. A. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol. 1979 Feb;8(1):1–18. doi: 10.1007/BF01206454. [DOI] [PubMed] [Google Scholar]
  18. Hinds J. W., McNelly N. A. Aging in the rat olfactory system: correlation of changes in the olfactory epithelium and olfactory bulb. J Comp Neurol. 1981 Dec 10;203(3):441–453. doi: 10.1002/cne.902030308. [DOI] [PubMed] [Google Scholar]
  19. House C., Wettenhall R. E., Kemp B. E. The influence of basic residues on the substrate specificity of protein kinase C. J Biol Chem. 1987 Jan 15;262(2):772–777. [PubMed] [Google Scholar]
  20. Hyman C., Pfenninger K. H. Intracellular regulators of neuronal sprouting: II. Phosphorylation reactions in isolated growth cones. J Neurosci. 1987 Dec;7(12):4076–4083. doi: 10.1523/JNEUROSCI.07-12-04076.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kalil K., Skene J. H. Elevated synthesis of an axonally transported protein correlates with axon outgrowth in normal and injured pyramidal tracts. J Neurosci. 1986 Sep;6(9):2563–2570. doi: 10.1523/JNEUROSCI.06-09-02563.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kappers J. A. The mammalian pineal gland, a survey. Acta Neurochir (Wien) 1976;34(1-4):109–149. doi: 10.1007/BF01405867. [DOI] [PubMed] [Google Scholar]
  23. Masure H. R., Alexander K. A., Wakim B. T., Storm D. R. Physicochemical and hydrodynamic characterization of P-57, a neurospecific calmodulin binding protein. Biochemistry. 1986 Nov 18;25(23):7553–7560. doi: 10.1021/bi00371a044. [DOI] [PubMed] [Google Scholar]
  24. McMaster D., Zwiers H., Lederis K. The growth-associated neuronal phosphoprotein B-50: improved purification, partial primary structure, and characterization and localization of proteolysis products. Brain Res Bull. 1988 Aug;21(2):265–276. doi: 10.1016/0361-9230(88)90241-9. [DOI] [PubMed] [Google Scholar]
  25. Meiri K. F., Gordon-Weeks P. R. GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction. J Neurosci. 1990 Jan;10(1):256–266. doi: 10.1523/JNEUROSCI.10-01-00256.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986 May;83(10):3537–3541. doi: 10.1073/pnas.83.10.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meiri K. F., Willard M., Johnson M. I. Distribution and phosphorylation of the growth-associated protein GAP-43 in regenerating sympathetic neurons in culture. J Neurosci. 1988 Jul;8(7):2571–2581. doi: 10.1523/JNEUROSCI.08-07-02571.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oestreicher A. B., Gispen W. H. Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res. 1986 Jun 11;375(2):267–279. doi: 10.1016/0006-8993(86)90747-x. [DOI] [PubMed] [Google Scholar]
  29. Pisano M. R., Hegazy M. G., Reimann E. M., Dokas L. A. Phosphorylation of protein B-50 (GAP-43) from adult rat brain cortex by casein kinase II. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1207–1212. doi: 10.1016/s0006-291x(88)81268-3. [DOI] [PubMed] [Google Scholar]
  30. Price J. L., Powell T. P. An electron-microscopic study of the termination of the afferent fibres to the olfactory bulb from the cerebral hemisphere. J Cell Sci. 1970 Jul;7(1):157–187. doi: 10.1242/jcs.7.1.157. [DOI] [PubMed] [Google Scholar]
  31. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  32. Saito N., Kikkawa U., Nishizuka Y., Tanaka C. Distribution of protein kinase C-like immunoreactive neurons in rat brain. J Neurosci. 1988 Feb;8(2):369–382. doi: 10.1523/JNEUROSCI.08-02-00369.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shively J. E., Miller P., Ronk M. Microsequence analysis of peptides and proteins. VI. A continuous flow reactor for sample concentration and sequence analysis. Anal Biochem. 1987 Jun;163(2):517–529. doi: 10.1016/0003-2697(87)90257-0. [DOI] [PubMed] [Google Scholar]
  34. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science. 1986 Aug 15;233(4765):783–786. doi: 10.1126/science.3738509. [DOI] [PubMed] [Google Scholar]
  35. Skene J. H., Virág I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 1989 Feb;108(2):613–624. doi: 10.1083/jcb.108.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Skene J. H., Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol. 1981 Apr;89(1):96–103. doi: 10.1083/jcb.89.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Skene J. H., Willard M. Electrophoretic analysis of axonally transported proteins in toad retinal ganglion cells. J Neurochem. 1981 Jul;37(1):79–87. doi: 10.1111/j.1471-4159.1981.tb05293.x. [DOI] [PubMed] [Google Scholar]
  38. Turner R. S., Kemp B. E., Su H. D., Kuo J. F. Substrate specificity of phospholipid/Ca2+-dependent protein kinase as probed with synthetic peptide fragments of the bovine myelin basic protein. J Biol Chem. 1985 Sep 25;260(21):11503–11507. [PubMed] [Google Scholar]
  39. Van Hooff C. O., De Graan P. N., Oestreicher A. B., Gispen W. H. B-50 phosphorylation and polyphosphoinositide metabolism in nerve growth cone membranes. J Neurosci. 1988 May;8(5):1789–1795. doi: 10.1523/JNEUROSCI.08-05-01789.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Hooff C. O., De Graan P. N., Oestreicher A. B., Gispen W. H. Muscarinic receptor activation stimulates B-50/GAP43 phosphorylation in isolated nerve growth cones. J Neurosci. 1989 Nov;9(11):3753–3759. doi: 10.1523/JNEUROSCI.09-11-03753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Van Lookeren Campagne M., Oestreicher A. B., Van Bergen en Henegowen P. M., Gispen W. H. Ultrastructural immunocytochemical localization of B-50/GAP43, a protein kinase C substrate, in isolated presynaptic nerve terminals and neuronal growth cones. J Neurocytol. 1989 Aug;18(4):479–489. doi: 10.1007/BF01474544. [DOI] [PubMed] [Google Scholar]
  42. Verhaagen J., Oestreicher A. B., Gispen W. H., Margolis F. L. The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci. 1989 Feb;9(2):683–691. doi: 10.1523/JNEUROSCI.09-02-00683.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wakim B. T., Alexander K. A., Masure H. R., Cimler B. M., Storm D. R., Walsh K. A. Amino acid sequence of P-57, a neurospecific calmodulin-binding protein. Biochemistry. 1987 Nov 17;26(23):7466–7470. doi: 10.1021/bi00397a040. [DOI] [PubMed] [Google Scholar]
  44. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES