Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Mar 2;112(6):1073–1082. doi: 10.1083/jcb.112.6.1073

Spontaneous assembly of pore complex-containing membranes ("annulate lamellae") in Xenopus egg extract in the absence of chromatin

PMCID: PMC2288888  PMID: 1825658

Abstract

Extract prepared from activated Xenopus eggs is capable of reconstituting nuclei from added DNA or chromatin. We have incubated such extract in the absence of DNA and found that numerous flattened membrane cisternae containing densely spaced pore complexes (annulate lamellae) formed de novo. By electron and immunofluorescence microscopy employing a pore complex-specific antibody we followed their appearance in the extract. Annulate lamellae were first detectable at a 30-min incubation in the form of short cisternae which already contained a high pore density. At 90-120 min they were abundantly present and formed large multilamellar stacks. The kinetics of annulate lamellae assembly were identical to that of nuclear envelope formation after addition of DNA to the extract. However, in the presence of DNA or chromatin, i.e., under conditions promoting the assembly of nuclear envelopes, annulate lamellae formation was considerably reduced and, at sufficiently high chromatin concentrations, completely inhibited. Incubation of the extract with antibodies to lamin LIII did not interfere with annulate lamellae assembly, whereas in the presence of DNA formation of nuclear envelopes around chromatin was inhibited. Our data show that nuclear membrane vesicles are able to fuse spontaneously into membrane cisternae and to assemble pore complexes independently of interactions with chromatin and a lamina. We propose that nuclear envelope precursor material will assemble into a nuclear envelope when chromatin is available for binding the membrane vesicles, and into annulate lamellae when chromatin is absent or its binding sites are saturated.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benavente R., Dabauvalle M. C., Scheer U., Chaly N. Functional role of newly formed pore complexes in postmitotic nuclear reorganization. Chromosoma. 1989 Oct;98(4):233–241. doi: 10.1007/BF00327308. [DOI] [PubMed] [Google Scholar]
  2. Benavente R., Krohne G., Franke W. W. Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell. 1985 May;41(1):177–190. doi: 10.1016/0092-8674(85)90072-8. [DOI] [PubMed] [Google Scholar]
  3. Benavente R., Scheer U., Chaly N. Nucleocytoplasmic sorting of macromolecules following mitosis: fate of nuclear constituents after inhibition of pore complex function. Eur J Cell Biol. 1989 Oct;50(1):209–219. [PubMed] [Google Scholar]
  4. Berrios M., Avilion A. A. Nuclear formation in a Drosophila cell-free system. Exp Cell Res. 1990 Nov;191(1):64–70. doi: 10.1016/0014-4827(90)90036-a. [DOI] [PubMed] [Google Scholar]
  5. Blow J. J., Laskey R. A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell. 1986 Nov 21;47(4):577–587. doi: 10.1016/0092-8674(86)90622-7. [DOI] [PubMed] [Google Scholar]
  6. Blow J. J., Sleeman A. M. Replication of purified DNA in Xenopus egg extract is dependent on nuclear assembly. J Cell Sci. 1990 Mar;95(Pt 3):383–391. doi: 10.1242/jcs.95.3.383. [DOI] [PubMed] [Google Scholar]
  7. Burke B., Gerace L. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell. 1986 Feb 28;44(4):639–652. doi: 10.1016/0092-8674(86)90273-4. [DOI] [PubMed] [Google Scholar]
  8. Burke B. On the cell-free association of lamins A and C with metaphase chromosomes. Exp Cell Res. 1990 Jan;186(1):169–176. doi: 10.1016/0014-4827(90)90223-w. [DOI] [PubMed] [Google Scholar]
  9. Chaly N., Bladon T., Setterfield G., Little J. E., Kaplan J. G., Brown D. L. Changes in distribution of nuclear matrix antigens during the mitotic cell cycle. J Cell Biol. 1984 Aug;99(2):661–671. doi: 10.1083/jcb.99.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen T. Y., Merisko E. M. Annulate lamellae: comparison of antigenic epitopes of annulate lamellae membranes with the nuclear envelope. J Cell Biol. 1988 Oct;107(4):1299–1306. doi: 10.1083/jcb.107.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dabauvalle M. C., Benavente R., Chaly N. Monoclonal antibodies to a Mr 68,000 pore complex glycoprotein interfere with nuclear protein uptake in Xenopus oocytes. Chromosoma. 1988 Nov;97(3):193–197. doi: 10.1007/BF00292960. [DOI] [PubMed] [Google Scholar]
  12. Dabauvalle M. C., Loos K., Scheer U. Identification of a soluble precursor complex essential for nuclear pore assembly in vitro. Chromosoma. 1990 Dec;100(1):56–66. doi: 10.1007/BF00337603. [DOI] [PubMed] [Google Scholar]
  13. Franke W. W. Structure, biochemistry, and functions of the nuclear envelope. Int Rev Cytol. 1974;Suppl 4:71–236. [PubMed] [Google Scholar]
  14. Gerace L., Burke B. Functional organization of the nuclear envelope. Annu Rev Cell Biol. 1988;4:335–374. doi: 10.1146/annurev.cb.04.110188.002003. [DOI] [PubMed] [Google Scholar]
  15. Greber U. F., Senior A., Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 1990 May;9(5):1495–1502. doi: 10.1002/j.1460-2075.1990.tb08267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gulyas B. J. The rabbit zygote. II. The fate of annulate lamellae during first cleavage. Z Zellforsch Mikrosk Anat. 1972;133(2):187–200. [PubMed] [Google Scholar]
  17. Imoh H. Behaviour of annulate lamellae during the maturation of oocytes in the newt, Cynops pyrrhogaster. J Embryol Exp Morphol. 1982 Aug;70:153–169. [PubMed] [Google Scholar]
  18. Karsenti E., Newport J., Hubble R., Kirschner M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J Cell Biol. 1984 May;98(5):1730–1745. doi: 10.1083/jcb.98.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kessel R. G., Subtelny S. Alteration of annulate lamellae in the in vitro progesterone-treated, full-grown Rana pipiens oocyte. J Exp Zool. 1981 Jul;217(1):119–135. doi: 10.1002/jez.1402170113. [DOI] [PubMed] [Google Scholar]
  20. Kessel R. G. The annulate lamellae--from obscurity to spotlight. Electron Microsc Rev. 1989;2(2):257–348. doi: 10.1016/0892-0354(89)90003-8. [DOI] [PubMed] [Google Scholar]
  21. Klymkowsky M. W., Maynell L. A. MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. Dev Biol. 1989 Aug;134(2):479–485. doi: 10.1016/0012-1606(89)90121-8. [DOI] [PubMed] [Google Scholar]
  22. Lohka M. J., Masui Y. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science. 1983 May 13;220(4598):719–721. doi: 10.1126/science.6601299. [DOI] [PubMed] [Google Scholar]
  23. Lohka M. J., Masui Y. Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. J Cell Biol. 1984 Apr;98(4):1222–1230. doi: 10.1083/jcb.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lohka M. J. The reconstitution of nuclear envelopes in cell-free extracts. Cell Biol Int Rep. 1988 Sep;12(9):833–848. doi: 10.1016/0309-1651(88)90091-4. [DOI] [PubMed] [Google Scholar]
  25. Nakagawa J., Kitten G. T., Nigg E. A. A somatic cell-derived system for studying both early and late mitotic events in vitro. J Cell Sci. 1989 Nov;94(Pt 3):449–462. doi: 10.1242/jcs.94.3.449. [DOI] [PubMed] [Google Scholar]
  26. Newmeyer D. D., Lucocq J. M., Bürglin T. R., De Robertis E. M. Assembly in vitro of nuclei active in nuclear protein transport: ATP is required for nucleoplasmin accumulation. EMBO J. 1986 Mar;5(3):501–510. doi: 10.1002/j.1460-2075.1986.tb04239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Newport J. Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell. 1987 Jan 30;48(2):205–217. doi: 10.1016/0092-8674(87)90424-7. [DOI] [PubMed] [Google Scholar]
  28. Scheer U., Dabauvalle M. C., Merkert H., Benevente R. The nuclear envelope and the organization of the pore complexes. Cell Biol Int Rep. 1988 Sep;12(9):669–689. doi: 10.1016/0309-1651(88)90083-5. [DOI] [PubMed] [Google Scholar]
  29. Scheer U., Franke W. W. Negative staining and adenosine triphosphatase activity of annulate lamellae of newt oocytes. J Cell Biol. 1969 Aug;42(2):519–533. doi: 10.1083/jcb.42.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scheer U. Ultrastructure of the nuclear envelope of amphibian oocytes. IV. Chemical nature of the nuclear pore complex material. Z Zellforsch Mikrosk Anat. 1972;127(1):127–148. doi: 10.1007/BF00582762. [DOI] [PubMed] [Google Scholar]
  31. Sheehan M. A., Mills A. D., Sleeman A. M., Laskey R. A., Blow J. J. Steps in the assembly of replication-competent nuclei in a cell-free system from Xenopus eggs. J Cell Biol. 1988 Jan;106(1):1–12. doi: 10.1083/jcb.106.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stafstrom J. P., Staehelin L. A. Are annulate lamellae in the Drosophila embryo the result of overproduction of nuclear pore components? J Cell Biol. 1984 Feb;98(2):699–708. doi: 10.1083/jcb.98.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stafstrom J. P., Staehelin L. A. Dynamics of the nuclear envelope and of nuclear pore complexes during mitosis in the Drosophila embryo. Eur J Cell Biol. 1984 May;34(1):179–189. [PubMed] [Google Scholar]
  34. Steinert G., Baltus E., Hanocq-Quertier J., Brachet J. Ultrastructure of Xenopus laevis oocytes after injection of an extract from progesterone-treated oocytes. J Ultrastruct Res. 1974 Nov;49(2):188–210. doi: 10.1016/s0022-5320(74)80031-6. [DOI] [PubMed] [Google Scholar]
  35. Stick R., Hausen P. Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell. 1985 May;41(1):191–200. doi: 10.1016/0092-8674(85)90073-x. [DOI] [PubMed] [Google Scholar]
  36. Ulitzur N., Gruenbaum Y. Nuclear envelope assembly around sperm chromatin in cell-free preparations from Drosophila embryos. FEBS Lett. 1989 Dec 18;259(1):113–116. doi: 10.1016/0014-5793(89)81507-8. [DOI] [PubMed] [Google Scholar]
  37. Wilson K. L., Newport J. A trypsin-sensitive receptor on membrane vesicles is required for nuclear envelope formation in vitro. J Cell Biol. 1988 Jul;107(1):57–68. doi: 10.1083/jcb.107.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wozniak R. W., Bartnik E., Blobel G. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J Cell Biol. 1989 Jun;108(6):2083–2092. doi: 10.1083/jcb.108.6.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES