Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Mar 2;112(6):1189–1197. doi: 10.1083/jcb.112.6.1189

Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin

PMCID: PMC2288895  PMID: 1825661

Abstract

The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament- activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament- activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro.

Full Text

The Full Text of this article is available as a PDF (992.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cande W. Z., McDonald K. L. In vitro reactivation of anaphase spindle elongation using isolated diatom spindles. Nature. 1985 Jul 11;316(6024):168–170. doi: 10.1038/316168a0. [DOI] [PubMed] [Google Scholar]
  2. Cohn S. A., Ingold A. L., Scholey J. M. Quantitative analysis of sea urchin egg kinesin-driven microtubule motility. J Biol Chem. 1989 Mar 15;264(8):4290–4297. [PubMed] [Google Scholar]
  3. Collins C. A., Vallee R. B. Preparation of microtubules from rat liver and testis: cytoplasmic dynein is a major microtubule associated protein. Cell Motil Cytoskeleton. 1989;14(4):491–500. doi: 10.1002/cm.970140407. [DOI] [PubMed] [Google Scholar]
  4. Eckstein F., Goody R. S. Synthesis and properties of diastereoisomers of adenosine 5'-(O-1-thiotriphosphate) and adenosine 5'-(O-2-thiotriphosphate). Biochemistry. 1976 Apr 20;15(8):1685–1691. doi: 10.1021/bi00653a015. [DOI] [PubMed] [Google Scholar]
  5. Gibbons I. R. Dynein ATPases as microtubule motors. J Biol Chem. 1988 Nov 5;263(31):15837–15840. [PubMed] [Google Scholar]
  6. Gibbons I. R., Rowe A. J. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. doi: 10.1126/science.149.3682.424. [DOI] [PubMed] [Google Scholar]
  7. Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
  8. Gilbert S. P., Sloboda R. D. A squid dynein isoform promotes axoplasmic vesicle translocation. J Cell Biol. 1989 Nov;109(5):2379–2394. doi: 10.1083/jcb.109.5.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodenough U. W. Motile detergent-extracted cells of Tetrahymena and Chlamydomonas. J Cell Biol. 1983 Jun;96(6):1610–1621. doi: 10.1083/jcb.96.6.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hackney D. D. Kinesin ATPase: rate-limiting ADP release. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6314–6318. doi: 10.1073/pnas.85.17.6314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
  12. Hirokawa N., Pfister K. K., Yorifuji H., Wagner M. C., Brady S. T., Bloom G. S. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989 Mar 10;56(5):867–878. doi: 10.1016/0092-8674(89)90691-0. [DOI] [PubMed] [Google Scholar]
  13. Holzbaur E. L., Johnson K. A. Microtubules accelerate ADP release by dynein. Biochemistry. 1989 Aug 22;28(17):7010–7016. doi: 10.1021/bi00443a034. [DOI] [PubMed] [Google Scholar]
  14. Inaba K., Okuno M., Mohri H. Anthraniloyl ATP, a fluorescent analog of ATP, as a substrate for dynein ATPase and flagellar motility. Arch Biochem Biophys. 1989 Oct;274(1):209–215. doi: 10.1016/0003-9861(89)90432-3. [DOI] [PubMed] [Google Scholar]
  15. Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
  16. Johnson K. A., Wall J. S. Structure and molecular weight of the dynein ATPase. J Cell Biol. 1983 Mar;96(3):669–678. doi: 10.1083/jcb.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kiehart D. P. Molecular genetic dissection of myosin heavy chain function. Cell. 1990 Feb 9;60(3):347–350. doi: 10.1016/0092-8674(90)90583-z. [DOI] [PubMed] [Google Scholar]
  18. Kuznetsov S. A., Gelfand V. I. Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8530–8534. doi: 10.1073/pnas.83.22.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lowey S., Slayter H. S., Weeds A. G., Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969 May 28;42(1):1–29. doi: 10.1016/0022-2836(69)90483-5. [DOI] [PubMed] [Google Scholar]
  21. Marchese-Ragona S. P., Wall J. S., Johnson K. A. Structure and mass analysis of 14S dynein obtained from Tetrahymena cilia. J Cell Biol. 1988 Jan;106(1):127–132. doi: 10.1083/jcb.106.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masuda H., Hirano T., Yanagida M., Cande W. Z. In vitro reactivation of spindle elongation in fission yeast nuc2 mutant cells. J Cell Biol. 1990 Feb;110(2):417–425. doi: 10.1083/jcb.110.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ogawa K., Mohri H. Studies on flagellar ATPase from sea urchin spermatozoa. I. Purification and some properties of the enzyme. Biochim Biophys Acta. 1972 Jan 21;256(1):142–155. doi: 10.1016/0005-2728(72)90169-7. [DOI] [PubMed] [Google Scholar]
  24. Okamoto Y., Sekine T. A streamlined method of subfragment one preparation from myosin. J Biochem. 1985 Oct;98(4):1143–1145. doi: 10.1093/oxfordjournals.jbchem.a135365. [DOI] [PubMed] [Google Scholar]
  25. Omoto C. K., Nakamaye K. ATP analogs substituted on the 2-position as substrates for dynein ATPase activity. Biochim Biophys Acta. 1989 Nov 30;999(2):221–224. doi: 10.1016/0167-4838(89)90222-7. [DOI] [PubMed] [Google Scholar]
  26. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  27. Pfister K. K., Haley B. E., Witman G. B. Labeling of Chlamydomonas 18 S dynein polypeptides by 8-azidoadenosine 5'-triphosphate, a photoaffinity analog of ATP. J Biol Chem. 1985 Oct 15;260(23):12844–12850. [PubMed] [Google Scholar]
  28. Pfister K. K., Haley B. E., Witman G. B. The photoaffinity probe 8-azidoadenosine 5'-triphosphate selectively labels the heavy chain of Chlamydomonas 12 S dynein. J Biol Chem. 1984 Jul 10;259(13):8499–8504. [PubMed] [Google Scholar]
  29. Porter M. E., Johnson K. A. Characterization of the ATP-sensitive binding of Tetrahymena 30 S dynein to bovine brain microtubules. J Biol Chem. 1983 May 25;258(10):6575–6581. [PubMed] [Google Scholar]
  30. Porter M. E., Scholey J. M., Stemple D. L., Vigers G. P., Vale R. D., Sheetz M. P., McIntosh J. R. Characterization of the microtubule movement produced by sea urchin egg kinesin. J Biol Chem. 1987 Feb 25;262(6):2794–2802. [PubMed] [Google Scholar]
  31. Pratt M. M. Homology of egg and flagellar dynein. Comparison of ATP-binding sites and primary structure. J Biol Chem. 1986 Jan 15;261(2):956–964. [PubMed] [Google Scholar]
  32. Sale W. S., Fox L. A. Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro. J Cell Biol. 1988 Nov;107(5):1793–1797. doi: 10.1083/jcb.107.5.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schliwa M., Shimizu T., Vale R. D., Euteneuer U. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable. J Cell Biol. 1991 Mar;112(6):1199–1203. doi: 10.1083/jcb.112.6.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  35. Shimizu T., Katsura T., Domanico P. L., Marchese-Ragona S. P., Johnson K. A. Adenosine 5'-O-(3-thiotriphosphate) hydrolysis by dynein. Biochemistry. 1989 Aug 22;28(17):7022–7027. doi: 10.1021/bi00443a036. [DOI] [PubMed] [Google Scholar]
  36. Shimizu T., Okuno M., Marchese-Ragona S. P., Johnson K. A. Phosphorothioate analogs of ATP as the substrates of dynein and ciliary or flagellar movement. Eur J Biochem. 1990 Aug 17;191(3):543–550. doi: 10.1111/j.1432-1033.1990.tb19155.x. [DOI] [PubMed] [Google Scholar]
  37. Shimizu T. Steady-state kinetic study of vanadate-induced inhibition of ciliary dynein adenosinetriphosphatase activity from Tetrahymena. Biochemistry. 1981 Jul 21;20(15):4347–4354. doi: 10.1021/bi00518a018. [DOI] [PubMed] [Google Scholar]
  38. Shimizu T. The substrate specificity of dynein from Tetrahymena cilia. J Biochem. 1987 Nov;102(5):1159–1165. doi: 10.1093/oxfordjournals.jbchem.a122154. [DOI] [PubMed] [Google Scholar]
  39. Shpetner H. S., Paschal B. M., Vallee R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J Cell Biol. 1988 Sep;107(3):1001–1009. doi: 10.1083/jcb.107.3.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shpetner H. S., Vallee R. B. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell. 1989 Nov 3;59(3):421–432. doi: 10.1016/0092-8674(89)90027-5. [DOI] [PubMed] [Google Scholar]
  41. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  42. Takenaka H., Ikehara M., Tonomura Y. Interaction between actomyosin and 8-substituted ATP analogs. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4229–4233. doi: 10.1073/pnas.75.9.4229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tonomura Y., Imamura K., Ikehara M., Uno H., Harada F. Interaction between synthetic ATP analogues and actomyosin systems. IV. J Biochem. 1967 Apr;61(4):460–472. doi: 10.1093/oxfordjournals.jbchem.a128569. [DOI] [PubMed] [Google Scholar]
  44. Toyoshima Y. Y. Chymotryptic digestion of Tetrahymena 22S dynein. I. Decomposition of three-headed 22S dynein to one- and two-headed particles. J Cell Biol. 1987 Aug;105(2):887–895. doi: 10.1083/jcb.105.2.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Toyoshima Y. Y., Kron S. J., McNally E. M., Niebling K. R., Toyoshima C., Spudich J. A. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature. 1987 Aug 6;328(6130):536–539. doi: 10.1038/328536a0. [DOI] [PubMed] [Google Scholar]
  46. Vale R. D., Goldstein L. S. One motor, many tails: an expanding repertoire of force-generating enzymes. Cell. 1990 Mar 23;60(6):883–885. doi: 10.1016/0092-8674(90)90334-b. [DOI] [PubMed] [Google Scholar]
  47. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vale R. D., Soll D. R., Gibbons I. R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell. 1989 Dec 1;59(5):915–925. doi: 10.1016/0092-8674(89)90614-4. [DOI] [PubMed] [Google Scholar]
  49. Vale R. D., Toyoshima Y. Y. Microtubule translocation properties of intact and proteolytically digested dyneins from Tetrahymena cilia. J Cell Biol. 1989 Jun;108(6):2327–2334. doi: 10.1083/jcb.108.6.2327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Walker R. A., Salmon E. D., Endow S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature. 1990 Oct 25;347(6295):780–782. doi: 10.1038/347780a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES