Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Apr 2;113(2):429–436. doi: 10.1083/jcb.113.2.429

Antibodies to the retina N-acetylgalactosaminylphosphotransferase modulate N-cadherin-mediated adhesion and uncouple the N-cadherin transferase complex from the actin-containing cytoskeleton

PMCID: PMC2288929  PMID: 1849140

Abstract

Embryonic chick neural retina cells have at their surface an N- Acetylgalactosaminylphosphotransferase (GalNAcPTase) which is associated with, and glycosylates, the calcium-dependent cell-cell adhesion molecule, N-cadherin (Balsamo, J., and J. Lilien. 1990. J. Biol. Chem. 265:2923-2928). In this manuscript, we demonstrate that antibodies directed against the GalNAcPTase, as well as anti-N-cadherin antibodies, are able to inhibit adhesion of chick neural retina cells to a cell monolayer, to immobilized N-cadherin, or to immobilized anti- N-cadherin antibody. These results indicate that anti-GalNAcPTase antibodies modulate the function of N-cadherin, interfering with the formation of N-cadherin-mediated adhesions. We also demonstrate that actin is associated with the N-cadherin/GalNAcPTase complex and that binding of anti-GalNAcPTase antibodies to intact cells results in dissociation of actin from the complex. We suggest that the GalNAcPTase modulates N-cadherin function by altering its interaction with the cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balsamo J., Lilien J. An N-acetylgalactosaminyltransferase and its acceptor in embryonic chick neural retina exist in interconvertible particulate forms depending on their cellular location. J Biol Chem. 1982 Jan 10;257(1):349–354. [PubMed] [Google Scholar]
  2. Balsamo J., Lilien J. N-cadherin is stably associated with and is an acceptor for a cell surface N-acetylgalactosaminylphosphotransferase. J Biol Chem. 1990 Feb 15;265(5):2923–2928. [PubMed] [Google Scholar]
  3. Balsamo J., Pratt R. S., Emmerling M. R., Grunwald G. B., Lilien J. Identification of the chick neural retina cell surface N-acetylgalactosaminyltransferase using monoclonal antibodies. J Cell Biochem. 1986;32(2):125–141. doi: 10.1002/jcb.240320205. [DOI] [PubMed] [Google Scholar]
  4. Balsamo J., Pratt R. S., Lilien J. Chick neural retina N-acetylgalactosaminyltransferase/acceptor complex: catalysis involves transfer of N-acetylgalactosamine phosphate to endogenous acceptors. Biochemistry. 1986 Sep 23;25(19):5402–5407. doi: 10.1021/bi00367a009. [DOI] [PubMed] [Google Scholar]
  5. Blaschuk O. W., Sullivan R., David S., Pouliot Y. Identification of a cadherin cell adhesion recognition sequence. Dev Biol. 1990 May;139(1):227–229. doi: 10.1016/0012-1606(90)90290-y. [DOI] [PubMed] [Google Scholar]
  6. Crittenden S. L., Pratt R. S., Cook J. H., Balsamo J., Lilien J. Immunologically unique and common domains within a family of proteins related to the retina Ca2+-dependent cell adhesion molecule, NcalCAM. Development. 1987 Dec;101(4):729–740. doi: 10.1242/dev.101.4.729. [DOI] [PubMed] [Google Scholar]
  7. Falkner F. G., Saumweber H., Biessmann H. Two Drosophila melanogaster proteins related to intermediate filament proteins of vertebrate cells. J Cell Biol. 1981 Oct;91(1):175–183. doi: 10.1083/jcb.91.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grunwald G. B., Geller R. L., Lilien J. Enzymatic dissection of embryonic cell adhesive mechanisms. J Cell Biol. 1980 Jun;85(3):766–776. doi: 10.1083/jcb.85.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hatta K., Nose A., Nagafuchi A., Takeichi M. Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J Cell Biol. 1988 Mar;106(3):873–881. doi: 10.1083/jcb.106.3.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hatta K., Okada T. S., Takeichi M. A monoclonal antibody disrupting calcium-dependent cell-cell adhesion of brain tissues: possible role of its target antigen in animal pattern formation. Proc Natl Acad Sci U S A. 1985 May;82(9):2789–2793. doi: 10.1073/pnas.82.9.2789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirano S., Nose A., Hatta K., Kawakami A., Takeichi M. Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol. 1987 Dec;105(6 Pt 1):2501–2510. doi: 10.1083/jcb.105.6.2501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaffe S. H., Friedlander D. R., Matsuzaki F., Crossin K. L., Cunningham B. A., Edelman G. M. Differential effects of the cytoplasmic domains of cell adhesion molecules on cell aggregation and sorting-out. Proc Natl Acad Sci U S A. 1990 May;87(9):3589–3593. doi: 10.1073/pnas.87.9.3589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lotz M. M., Burdsal C. A., Erickson H. P., McClay D. R. Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol. 1989 Oct;109(4 Pt 1):1795–1805. doi: 10.1083/jcb.109.4.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyatani S., Shimamura K., Hatta M., Nagafuchi A., Nose A., Matsunaga M., Hatta K., Takeichi M. Neural cadherin: role in selective cell-cell adhesion. Science. 1989 Aug 11;245(4918):631–635. doi: 10.1126/science.2762814. [DOI] [PubMed] [Google Scholar]
  15. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nelson W. J., Shore E. M., Wang A. Z., Hammerton R. W. Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1990 Feb;110(2):349–357. doi: 10.1083/jcb.110.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nose A., Tsuji K., Takeichi M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell. 1990 Apr 6;61(1):147–155. doi: 10.1016/0092-8674(90)90222-z. [DOI] [PubMed] [Google Scholar]
  18. Scott L. J., Balsamo J., Sanes J. R., Lilien J. Synaptic localization and neural regulation of an N-acetylgalactosaminyl transferase in skeletal muscle. J Neurosci. 1990 Jan;10(1):346–350. doi: 10.1523/JNEUROSCI.10-01-00346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shur B. D. Expression and function of cell surface galactosyltransferase. Biochim Biophys Acta. 1989 Dec 6;988(3):389–409. doi: 10.1016/0304-4157(89)90012-9. [DOI] [PubMed] [Google Scholar]
  20. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
  21. Walther B. T., Ohman R., Roseman S. A quantitative assay for intercellular adhesion. Proc Natl Acad Sci U S A. 1973 May;70(5):1569–1573. doi: 10.1073/pnas.70.5.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES