Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Apr 2;113(2):303–310. doi: 10.1083/jcb.113.2.303

Neonatal and adult myosin heavy chains form homodimers during avian skeletal muscle development

PMCID: PMC2288945  PMID: 1707054

Abstract

Myosin isoforms contribute to the heterogeneity and adaptability of skeletal muscle fibers. Besides the well-characterized slow and fast muscle myosins, there are those isoforms that appear transiently during the course of muscle development. At a stage of development when two different myosins are coexpressed, the possibility arises for the existence of heterodimers, molecules containing two different heavy chains, or homodimers, molecules with two identical heavy chains. The question of whether neonatal and adult myosin isoforms can associate to form a stable heterodimer was addressed by using stage-specific monoclonal antibodies in conjunction with immunological and electron microscopic techniques. We find that independent of the ratio of adult to neonatal myosin, depending on the age of the animal, the myosin heavy chains form predominantly homodimeric molecules. The small amount of hybrid species present suggests that either the rod portion of the two heavy chain isoforms differs too much in sequence to form a stable alpha-helical coiled coil, or that the biosynthesis of the heavy chains precludes the formation of heterodimeric molecules.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandman E. Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle. Science. 1985 Feb 15;227(4688):780–782. doi: 10.1126/science.3969567. [DOI] [PubMed] [Google Scholar]
  3. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  4. Bandman E. Myosin isoenzyme transitions in muscle development, maturation, and disease. Int Rev Cytol. 1985;97:97–131. doi: 10.1016/s0074-7696(08)62349-9. [DOI] [PubMed] [Google Scholar]
  5. Benfield P. A., Lowey S., LeBlanc D. D., Waller G. S. Myosin isozymes in avian skeletal muscles. II. Fractionation of myosin isozymes from adult and embryonic chicken pectoralis muscle by immuno-affinity chromatography. J Muscle Res Cell Motil. 1983 Dec;4(6):717–738. doi: 10.1007/BF00712162. [DOI] [PubMed] [Google Scholar]
  6. Bouché M., Goldfine S. M., Fischman D. A. Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. J Cell Biol. 1988 Aug;107(2):587–596. doi: 10.1083/jcb.107.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Bronson D. D., Schachat F. H. Heterogeneity of contractile proteins. Differences in tropomyosin in fast, mixed, and slow skeletal muscles of the rabbit. J Biol Chem. 1982 Apr 10;257(7):3937–3944. [PubMed] [Google Scholar]
  9. Dechesne C. A., Bouvagnet P., Walzthöny D., Léger J. J. Visualization of cardiac ventricular myosin heavy chain homodimers and heterodimers by monoclonal antibody epitope mapping. J Cell Biol. 1987 Dec;105(6 Pt 2):3031–3037. doi: 10.1083/jcb.105.6.3031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dibb N. J., Maruyama I. N., Krause M., Karn J. Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. J Mol Biol. 1989 Feb 5;205(3):603–613. doi: 10.1016/0022-2836(89)90229-5. [DOI] [PubMed] [Google Scholar]
  11. Graceffa P. In-register homodimers of smooth muscle tropomyosin. Biochemistry. 1989 Feb 7;28(3):1282–1287. doi: 10.1021/bi00429a050. [DOI] [PubMed] [Google Scholar]
  12. Hofmann S., Düsterhöft S., Pette D. Six myosin heavy chain isoforms are expressed during chick breast muscle development. FEBS Lett. 1988 Oct 10;238(2):245–248. doi: 10.1016/0014-5793(88)80488-5. [DOI] [PubMed] [Google Scholar]
  13. Hoh J. F., McGrath P. A., Hale P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol. 1978 Nov;10(11):1053–1076. doi: 10.1016/0022-2828(78)90401-7. [DOI] [PubMed] [Google Scholar]
  14. Hoh J. F., Yeoh G. P., Thomas M. A., Higginbottom L. Structural differences in the heavy chains of rat ventricular myosin isoenzymes. FEBS Lett. 1979 Jan 15;97(2):330–334. doi: 10.1016/0014-5793(79)80115-5. [DOI] [PubMed] [Google Scholar]
  15. Kerwin B., Bandman E. Assembly of avian skeletal muscle myosins: evidence that homodimers of the heavy chain subunit are the thermodynamically stable form. J Cell Biol. 1991 Apr;113(2):311–320. doi: 10.1083/jcb.113.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehrer S. S., Qian Y. D., Hvidt S. Assembly of the native heterodimer of Rana esculenta tropomyosin by chain exchange. Science. 1989 Nov 17;246(4932):926–928. doi: 10.1126/science.2814515. [DOI] [PubMed] [Google Scholar]
  17. Lehrer S. S., Qian Y. Unfolding/refolding studies of smooth muscle tropomyosin. Evidence for a chain exchange mechanism in the preferential assembly of the native heterodimer. J Biol Chem. 1990 Jan 15;265(2):1134–1138. [PubMed] [Google Scholar]
  18. Lowey S., Benefield P. A., Silberstein L., Lang L. M. Distribution of light chains in fast skeletal myosin. Nature. 1979 Nov 29;282(5738):522–524. doi: 10.1038/282522a0. [DOI] [PubMed] [Google Scholar]
  19. Lowey S., Benfield P. A., LeBlanc D. D., Waller G. S. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J Muscle Res Cell Motil. 1983 Dec;4(6):695–716. doi: 10.1007/BF00712161. [DOI] [PubMed] [Google Scholar]
  20. Mahdavi V., Chambers A. P., Nadal-Ginard B. Cardiac alpha- and beta-myosin heavy chain genes are organized in tandem. Proc Natl Acad Sci U S A. 1984 May;81(9):2626–2630. doi: 10.1073/pnas.81.9.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
  22. McNally E. M., Kraft R., Bravo-Zehnder M., Taylor D. A., Leinwand L. A. Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. J Mol Biol. 1989 Dec 5;210(3):665–671. doi: 10.1016/0022-2836(89)90141-1. [DOI] [PubMed] [Google Scholar]
  23. Nagai R., Kuro-o M., Babij P., Periasamy M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem. 1989 Jun 15;264(17):9734–9737. [PubMed] [Google Scholar]
  24. Nguyen H. T., Gubits R. M., Wydro R. M., Nadal-Ginard B. Sarcomeric myosin heavy chain is coded by a highly conserved multigene family. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5230–5234. doi: 10.1073/pnas.79.17.5230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pastra-Landis S. C., Huiatt T., Lowey S. Assembly and kinetic properties of myosin light chain isozymes from fast skeletal muscle. J Mol Biol. 1983 Oct 25;170(2):403–422. doi: 10.1016/s0022-2836(83)80155-7. [DOI] [PubMed] [Google Scholar]
  26. Periasamy M., Wieczorek D. F., Nadal-Ginard B. Characterization of a developmentally regulated perinatal myosin heavy-chain gene expressed in skeletal muscle. J Biol Chem. 1984 Nov 10;259(21):13573–13578. [PubMed] [Google Scholar]
  27. Reiser P. J., Kasper C. E., Greaser M. L., Moss R. L. Functional significance of myosin transitions in single fibers of developing soleus muscle. Am J Physiol. 1988 May;254(5 Pt 1):C605–C613. doi: 10.1152/ajpcell.1988.254.5.C605. [DOI] [PubMed] [Google Scholar]
  28. Robbins J., Horan T., Gulick J., Kropp K. The chicken myosin heavy chain family. J Biol Chem. 1986 May 15;261(14):6606–6612. [PubMed] [Google Scholar]
  29. Rovner A. S., Thompson M. M., Murphy R. A. Two different heavy chains are found in smooth muscle myosin. Am J Physiol. 1986 Jun;250(6 Pt 1):C861–C870. doi: 10.1152/ajpcell.1986.250.6.C861. [DOI] [PubMed] [Google Scholar]
  30. Sanders C., Burtnick L. D., Smillie L. B. Native chicken gizzard tropomyosin is predominantly a beta gamma-heterodimer. J Biol Chem. 1986 Sep 25;261(27):12774–12778. [PubMed] [Google Scholar]
  31. Schachat F. H., Harris H. E., Epstein H. F. Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans. Cell. 1977 Apr;10(4):721–728. doi: 10.1016/0092-8674(77)90106-4. [DOI] [PubMed] [Google Scholar]
  32. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  33. Silberstein L., Lowey S. Isolated and distribution of myosin isoenzymes in chicken pectoralis muscle. J Mol Biol. 1981 May 15;148(2):153–189. doi: 10.1016/0022-2836(81)90510-6. [DOI] [PubMed] [Google Scholar]
  34. Stockdale F. E., Miller J. B. The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol. 1987 Sep;123(1):1–9. doi: 10.1016/0012-1606(87)90420-9. [DOI] [PubMed] [Google Scholar]
  35. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
  36. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]
  37. Winkelmann D. A., Lowey S., Press J. L. Monoclonal antibodies localize changes on myosin heavy chain isozymes during avian myogenesis. Cell. 1983 Aug;34(1):295–306. doi: 10.1016/0092-8674(83)90160-5. [DOI] [PubMed] [Google Scholar]
  38. Winkelmann D. A., Lowey S. Probing myosin head structure with monoclonal antibodies. J Mol Biol. 1986 Apr 20;188(4):595–612. doi: 10.1016/s0022-2836(86)80009-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES