Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 May 1;113(3):573–583. doi: 10.1083/jcb.113.3.573

The effect of calcium activation of skinned fiber bundles on the structure of Limulus thick filaments

PMCID: PMC2288957  PMID: 2016337

Abstract

Here we present evidence that strongly suggests that the well- documented phenomenon of A-band shortening in Limulus telson muscle is activation dependent and reflects fragmentation of thick filaments at their ends. Calcium activation of detergent-skinned fiber bundles of Limulus telson muscle results in large decreases in A-band (from 5.1 to 3.3 microns) and thick filament (from 4.1 to 3.3 microns) lengths and the release of filament end fragments. In activated fibers, maintained stretched beyond overlap of thick and thin filaments, these end fragments are translocated to varying depths within the I-bands. Here they are closely associated with fine filamentous structures that also span the gap between A- and I-bands and attach to the distal one-third of the thick filaments. End-fragments are rarely, if ever, present in similarly stretched and skinned, but unstimulated fibers, although fine "gap filaments" persist. Negatively stained thick filaments, separated from skinned, calcium-activated, fiber bundles, allowed to shorten freely, are significantly shorter than those obtained from unstimulated fibers, but are identical to the latter with respect to both the surface helical array of myosin heads and diameters. Many end-fragments are present on grids containing thick filaments from activated fibers; few, if any, on those from unstimulated fibers. SDS-PAGE shows no evidence of proteolysis due to activation and demonstrates the presence of polypeptides with very high molecular weights in the preparations. We suggest that thick filament shortening is a direct result of activation in Limulus telson muscle and that it occurs largely by breakage within a defined distal region of each polar half of the filament. It is possible that at least some of the fine "gap filaments" are composed of a titin-like protein. They may move the activation- produced, fragmented ends of thick filaments to which they attach, into the I-bands by elastic recoil, in highly stretched fibers.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DE VILLAFRANCA G. W. The A and IB and lengths in stretched or contracted horseshoe crab skeletal muscle. J Ultrastruct Res. 1961 Apr;5:109–115. doi: 10.1016/s0022-5320(61)90008-9. [DOI] [PubMed] [Google Scholar]
  2. Davidheiser S., Davies R. E. Energy utilization by Limulus telson muscle at different sarcomere and A-band lengths. Am J Physiol. 1982 Mar;242(3):R394–R400. doi: 10.1152/ajpregu.1982.242.3.R394. [DOI] [PubMed] [Google Scholar]
  3. Dewey M. M., Levine R. J., Colflesh D. E. Structure of Limulus striated muscle. The contractile apparatus at various sarcomere lengths. J Cell Biol. 1973 Sep;58(3):574–593. doi: 10.1083/jcb.58.3.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dewey M. M., Walcott B., Colflesh D. E., Terry H., Levine R. J. Changes in thick filament length in Limulus striated muscle. J Cell Biol. 1977 Nov;75(2 Pt 1):366–380. doi: 10.1083/jcb.75.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Epstein H. F., Miller D. M., 3rd, Ortiz I., Berliner G. C. Myosin and paramyosin are organized about a newly identified core structure. J Cell Biol. 1985 Mar;100(3):904–915. doi: 10.1083/jcb.100.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Epstein H. F., Ortiz I., Mackinnon L. A. The alteration of myosin isoform compartmentation in specific mutants of Caenorhabditis elegans. J Cell Biol. 1986 Sep;103(3):985–993. doi: 10.1083/jcb.103.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higuchi H., Yoshioka T., Maruyama K. Positioning of actin filaments and tension generation in skinned muscle fibres released after stretch beyond overlap of the actin and myosin filaments. J Muscle Res Cell Motil. 1988 Dec;9(6):491–498. doi: 10.1007/BF01738754. [DOI] [PubMed] [Google Scholar]
  8. Horowits R., Podolsky R. J. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol. 1987 Nov;105(5):2217–2223. doi: 10.1083/jcb.105.5.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kensler R. W., Levine R. J. An electron microscopic and optical diffraction analysis of the structure of Limulus telson muscle thick filaments. J Cell Biol. 1982 Feb;92(2):443–451. doi: 10.1083/jcb.92.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Levine R. J., Chantler P. D., Kensler R. W. Arrangement of myosin heads on Limulus thick filaments. J Cell Biol. 1988 Nov;107(5):1739–1747. doi: 10.1083/jcb.107.5.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine R. J., Davidheiser S., Kelly A. M., Kensler R. W., Leferovich J., Davies R. E. Fibre types in Limulus telson muscles: morphology and histochemistry. J Muscle Res Cell Motil. 1989 Feb;10(1):53–66. doi: 10.1007/BF01739856. [DOI] [PubMed] [Google Scholar]
  12. Levine R. J., Dewey M. M., De Villafranca G. W. Immunohistochemical localization of contractile proteins in limulus striated muscle. J Cell Biol. 1972 Oct;55(1):221–235. doi: 10.1083/jcb.55.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levine R. J., Kensler R. W., Reedy M., Hoffman W., Davidheiser S., Davies R. E. Structure of Limulus and other invertebrate thick filaments. Adv Exp Med Biol. 1984;170:93–106. doi: 10.1007/978-1-4684-4703-3_9. [DOI] [PubMed] [Google Scholar]
  14. Levine R. J., Kensler R. W., Stewart M., Haselgrove J. C. Molecular organization of Limulus thick filaments. Soc Gen Physiol Ser. 1982;37:37–52. [PubMed] [Google Scholar]
  15. Levine R. J., Kensler R. W. Structure of short thick filaments from Limulus muscle. J Mol Biol. 1985 Mar 20;182(2):347–352. doi: 10.1016/0022-2836(85)90351-1. [DOI] [PubMed] [Google Scholar]
  16. Maruyama K., Matsuno A., Higuchi H., Shimaoka S., Kimura S., Shimizu T. Behaviour of connectin (titin) and nebulin in skinned muscle fibres released after extreme stretch as revealed by immunoelectron microscopy. J Muscle Res Cell Motil. 1989 Oct;10(5):350–359. doi: 10.1007/BF01758431. [DOI] [PubMed] [Google Scholar]
  17. Maruyama K., Sawada H., Kimura S., Ohashi K., Higuchi H., Umazume Y. Connectin filaments in stretched skinned fibers of frog skeletal muscle. J Cell Biol. 1984 Oct;99(4 Pt 1):1391–1397. doi: 10.1083/jcb.99.4.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miller D. M., 3rd, Ortiz I., Berliner G. C., Epstein H. F. Differential localization of two myosins within nematode thick filaments. Cell. 1983 Sep;34(2):477–490. doi: 10.1016/0092-8674(83)90381-1. [DOI] [PubMed] [Google Scholar]
  20. Nave R., Weber K. A myofibrillar protein of insect muscle related to vertebrate titin connects Z band and A band: purification and molecular characterization of invertebrate mini-titin. J Cell Sci. 1990 Apr;95(Pt 4):535–544. doi: 10.1242/jcs.95.4.535. [DOI] [PubMed] [Google Scholar]
  21. Periasamy A., Burns D. H., Holdren D. N., Pollack G. H., Trombitás K. A-band shortening in single fibers of frog skeletal muscle. Biophys J. 1990 Apr;57(4):815–828. doi: 10.1016/S0006-3495(90)82601-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pierobon-Bormioli S., Betto R., Salviati G. The organization of titin (connectin) and nebulin in the sarcomeres: an immunocytolocalization study. J Muscle Res Cell Motil. 1989 Dec;10(6):446–456. doi: 10.1007/BF01771820. [DOI] [PubMed] [Google Scholar]
  23. Sellers J. R. Phosphorylation-dependent regulation of Limulus myosin. J Biol Chem. 1981 Sep 10;256(17):9274–9278. [PubMed] [Google Scholar]
  24. Trinick J., Knight P., Whiting A. Purification and properties of native titin. J Mol Biol. 1984 Dec 5;180(2):331–356. doi: 10.1016/s0022-2836(84)80007-8. [DOI] [PubMed] [Google Scholar]
  25. Walcott B., Dewey M. M. Length-tension relation in Limulus striated muscle. J Cell Biol. 1980 Oct;87(1):204–208. doi: 10.1083/jcb.87.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang K., Wright J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. 1988 Dec;107(6 Pt 1):2199–2212. doi: 10.1083/jcb.107.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whiting A., Wardale J., Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol. 1989 Jan 5;205(1):263–268. doi: 10.1016/0022-2836(89)90381-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES