Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 May 1;113(3):671–680. doi: 10.1083/jcb.113.3.671

Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation

PMCID: PMC2288960  PMID: 2016341

Abstract

Serum-free mouse embryo (SFME) cells, derived in medium in which serum is replaced with growth factors and other supplements, are proastroblasts that are acutely dependent on epidermal growth factor (EGF) for survival. Ultrastructurally, an early change found in SFME cells deprived of EGF was a loss of polysomes which sedimentation analysis confirmed to be a shift from polysomes to monosomes. The ribosomal shift was not accompanied by decreased steady-state level of cytoplasmic actin mRNA examined as an indicator of cellular mRNA level. With time the cells became small and severely degenerate and exhibited nuclear morphology characteristic of apoptosis. Genomic DNA isolated from cultures undergoing EGF deprivation-dependent cell death exhibited a pattern of fragmentation resulting from endonuclease activation characteristic of cells undergoing apoptosis or programmed cell death. Flow cytometric analysis indicated that cultures in the absence of EGF contained almost exclusively G1-phase cells. Some of the phenomena associated with EGF deprivation of SFME cells are similar to those observed upon NGF deprivation of nerve cells in culture, suggesting that these neuroectodermal-derived cell types share common mechanisms of proliferative control involving peptide growth factor-dependent survival.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  2. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  3. Gray J. W., Coffino P. Cell cycle analysis by flow cytometry. Methods Enzymol. 1979;58:233–248. doi: 10.1016/s0076-6879(79)58140-3. [DOI] [PubMed] [Google Scholar]
  4. Gross M. K., Merrill G. F. Thymidine kinase synthesis is repressed in nonreplicating muscle cells by a translational mechanism that does not affect the polysomal distribution of thymidine kinase mRNA. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4987–4991. doi: 10.1073/pnas.86.13.4987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ham R. G., McKeehan W. L. Media and growth requirements. Methods Enzymol. 1979;58:44–93. doi: 10.1016/s0076-6879(79)58126-9. [DOI] [PubMed] [Google Scholar]
  6. Hamburger V., Brunso-Bechtold J. K., Yip J. W. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1981 Jan;1(1):60–71. doi: 10.1523/JNEUROSCI.01-01-00060.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Koury M. J., Bondurant M. C. Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science. 1990 Apr 20;248(4953):378–381. doi: 10.1126/science.2326648. [DOI] [PubMed] [Google Scholar]
  8. Loo D. T., Fuquay J. I., Rawson C. L., Barnes D. W. Extended culture of mouse embryo cells without senescence: inhibition by serum. Science. 1987 Apr 10;236(4798):200–202. doi: 10.1126/science.3494308. [DOI] [PubMed] [Google Scholar]
  9. Loo D. T., Sakai Y., Rawson C. L., Barnes D. W. Serial passage of embryonic human astrocytes in serum-free, hormone-supplemented medium. J Neurosci Res. 1991 Jan;28(1):101–109. doi: 10.1002/jnr.490280110. [DOI] [PubMed] [Google Scholar]
  10. Loo D., Rawson C., Helmrich A., Barnes D. Serum-free mouse embryo cells: growth responses in vitro. J Cell Physiol. 1989 Jun;139(3):484–491. doi: 10.1002/jcp.1041390306. [DOI] [PubMed] [Google Scholar]
  11. Loo D., Rawson C., Schmitt M., Lindburg K., Barnes D. Glucocorticoid and thyroid hormones inhibit proliferation of serum-free mouse embryo (SFME) cells. J Cell Physiol. 1990 Jan;142(1):210–217. doi: 10.1002/jcp.1041420126. [DOI] [PubMed] [Google Scholar]
  12. Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., Johnson E. M., Jr Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988 Mar;106(3):829–844. doi: 10.1083/jcb.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mather J. P., Sato G. H. The use of hormone-supplemented serum-free media in primary cultures. Exp Cell Res. 1979 Nov;124(1):215–221. doi: 10.1016/0014-4827(79)90271-4. [DOI] [PubMed] [Google Scholar]
  14. Nicola N. A. Hemopoietic cell growth factors and their receptors. Annu Rev Biochem. 1989;58:45–77. doi: 10.1146/annurev.bi.58.070189.000401. [DOI] [PubMed] [Google Scholar]
  15. Olivier A. R., Ballou L. M., Thomas G. Differential regulation of S6 phosphorylation by insulin and epidermal growth factor in Swiss mouse 3T3 cells: insulin activation of type 1 phosphatase. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4720–4724. doi: 10.1073/pnas.85.13.4720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rawson C., Cosola-Smith C., Barnes D. Death of serum-free mouse embryo cells caused by epidermal growth factor deprivation is prevented by cycloheximide, 12-O-tetradecanoylphorbol-13-acetate, or vanadate. Exp Cell Res. 1990 Jan;186(1):177–181. doi: 10.1016/0014-4827(90)90224-x. [DOI] [PubMed] [Google Scholar]
  17. Rawson C., Loo D., Helmrich A., Ernst T., Natsuno T., Merrill G., Barnes D. Serum inhibition of proliferation of serum-free mouse embryo cells. Exp Cell Res. 1991 Jan;192(1):271–277. doi: 10.1016/0014-4827(91)90186-x. [DOI] [PubMed] [Google Scholar]
  18. Rodríguez-Tarduchy G., López-Rivas A. Phorbol esters inhibit apoptosis in IL-2-dependent T lymphocytes. Biochem Biophys Res Commun. 1989 Nov 15;164(3):1069–1075. doi: 10.1016/0006-291x(89)91778-6. [DOI] [PubMed] [Google Scholar]
  19. Sakai Y., Rawson C., Lindburg K., Barnes D. Serum and transforming growth factor beta regulate glial fibrillary acidic protein in serum-free-derived mouse embryo cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8378–8382. doi: 10.1073/pnas.87.21.8378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shipley G. D., Ham R. G. Multiplication of Swiss 3T3 cells in a serum-free medium. Exp Cell Res. 1983 Jul;146(2):249–260. doi: 10.1016/0014-4827(83)90127-1. [DOI] [PubMed] [Google Scholar]
  21. TODARO G. J., GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J Cell Biol. 1963 May;17:299–313. doi: 10.1083/jcb.17.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  23. Yankner B. A., Shooter E. M. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]
  24. Yip H. K., Johnson E. M., Jr Developing dorsal root ganglion neurons require trophic support from their central processes: evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6245–6249. doi: 10.1073/pnas.81.19.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES