Abstract
Protein A-gold immunocytochemistry was applied in combination with morphometrical approaches to reveal the alpha 1(IV), alpha 2(IV), and alpha 3(IV) chains of type IV collagen as well as entactin on renal basement membranes, particularly on the glomerular one, during maturation. The results have indicated that a heterogeneity between renal basement membranes appears during the maturation process. In the glomerulus at the capillary loop stage, both the epithelial and endothelial cell basement membranes were labeled for the alpha 1(IV) and alpha 2(IV) chains of type IV collagen and entactin. After fusion, both proteins were present on the entire thickness of the typical glomerular basement membrane. At later stages, the labeling for alpha 1(IV) and alpha 2(IV) chains of type IV collagen decreased and drifted towards the endothelial side, whereas the labeling for the alpha 3(IV) chain increased and remained centrally located. Entactin remained on the entire thickness of the basement membrane during maturation and in adult stage. The distribution of endogenous serum albumin in the glomerular wall was studied during maturation, as a reference for the functional properties of the glomerular basement membrane. This distribution, dispersed through the entire thickness of the basement membrane at early stages, shifted towards the endothelial side of the lamina densa with maturation, demonstrating a progressive acquisition of the permselectivity. These results demonstrate that modifications in the content and organization of the different constituents of basement membranes occur with maturation and are required for the establishment of the filtration properties of the glomerular basement membrane.
Full Text
The Full Text of this article is available as a PDF (5.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamson D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J Cell Biol. 1985 Jun;100(6):1988–2000. doi: 10.1083/jcb.100.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abrahamson D. R., Perry E. W. Distribution of intravenously injected cationized ferritin within developing glomerular basement membranes of newborn rat kidneys. Anat Rec. 1986 Dec;216(4):534–543. doi: 10.1002/ar.1092160411. [DOI] [PubMed] [Google Scholar]
- Abrahamson D. R., Perry E. W. Evidence for splicing new basement membrane into old during glomerular development in newborn rat kidneys. J Cell Biol. 1986 Dec;103(6 Pt 1):2489–2498. doi: 10.1083/jcb.103.6.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abrahamson D. R. Structure and development of the glomerular capillary wall and basement membrane. Am J Physiol. 1987 Nov;253(5 Pt 2):F783–F794. doi: 10.1152/ajprenal.1987.253.5.F783. [DOI] [PubMed] [Google Scholar]
- Aumailley M., Wiedemann H., Mann K., Timpl R. Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV. Eur J Biochem. 1989 Sep 1;184(1):241–248. doi: 10.1111/j.1432-1033.1989.tb15013.x. [DOI] [PubMed] [Google Scholar]
- Avner E. D., Jaffe R., Temple T., Ellis D., Chung A. E. Development of renal basement membrane glycoproteins in metanephric organ culture. Lab Invest. 1983 Mar;48(3):263–268. [PubMed] [Google Scholar]
- Bakala H., Geloso-Meyer A., Cheignon M., Schaeverbeke J. Differentiation of the glomerular filtration barrier in the rat fetus: possible role of collagen. Connect Tissue Res. 1985;13(4):283–290. doi: 10.3109/03008208509152409. [DOI] [PubMed] [Google Scholar]
- Batsford S. R., Rohrbach R., Vogt A. Size restriction in the glomerular capillary wall: importance of lamina densa. Kidney Int. 1987 Mar;31(3):710–717. doi: 10.1038/ki.1987.56. [DOI] [PubMed] [Google Scholar]
- Bendayan M. Alteration in the distribution of type IV collagen in glomerular basal laminae in diabetic rats as revealed by immunocytochemistry and morphometrical approach. Diabetologia. 1985 Jun;28(6):373–378. doi: 10.1007/BF00283147. [DOI] [PubMed] [Google Scholar]
- Bendayan M., Gingras D., Charest P. Distribution of endogenous albumin in the glomerular wall of streptozotocin-induced diabetic rats as revealed by high-resolution immunocytochemistry. Diabetologia. 1986 Dec;29(12):868–875. doi: 10.1007/BF00870142. [DOI] [PubMed] [Google Scholar]
- Butkowski R. J., Langeveld J. P., Wieslander J., Hamilton J., Hudson B. G. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J Biol Chem. 1987 Jun 5;262(16):7874–7877. [PubMed] [Google Scholar]
- Butkowski R. J., Wieslander J., Kleppel M., Michael A. F., Fish A. J. Basement membrane collagen in the kidney: regional localization of novel chains related to collagen IV. Kidney Int. 1989 May;35(5):1195–1202. doi: 10.1038/ki.1989.110. [DOI] [PubMed] [Google Scholar]
- Butkowski R. J., Wieslander J., Wisdom B. J., Barr J. F., Noelken M. E., Hudson B. G. Properties of the globular domain of type IV collagen and its relationship to the Goodpasture antigen. J Biol Chem. 1985 Mar 25;260(6):3739–3747. [PubMed] [Google Scholar]
- Carlin B. E., Durkin M. E., Bender B., Jaffe R., Chung A. E. Synthesis of laminin and entactin by F9 cells induced with retinoic acid and dibutyryl cyclic AMP. J Biol Chem. 1983 Jun 25;258(12):7729–7737. [PubMed] [Google Scholar]
- Carlin B., Jaffe R., Bender B., Chung A. E. Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem. 1981 May 25;256(10):5209–5214. [PubMed] [Google Scholar]
- Carlson E. C., Audette J. L. Intrinsic fibrillar components of human glomerular basement membranes: a TEM analysis following proteolytic dissection. J Submicrosc Cytol Pathol. 1989 Jan;21(1):83–92. [PubMed] [Google Scholar]
- Desjardins M., Bendayan M. Heterogenous distribution of type IV collagen, entactin, heparan sulfate proteoglycan, and laminin among renal basement membranes as demonstrated by quantitative immunocytochemistry. J Histochem Cytochem. 1989 Jun;37(6):885–897. doi: 10.1177/37.6.2723404. [DOI] [PubMed] [Google Scholar]
- Desjardins M., Bendayan M. Ultrastructural distribution of endogenous IgGs in the glomerular wall of control and diabetic rats. Histochem J. 1989 Dec;21(12):731–742. doi: 10.1007/BF01002839. [DOI] [PubMed] [Google Scholar]
- Desjardins M., Gros F., Wieslander J., Gubler M. C., Bendayan M. Heterogeneous distribution of monomeric elements from the globular domain (NC1) of type IV collagen in renal basement membranes as revealed by high resolution quantitative immunocytochemistry. Lab Invest. 1990 Nov;63(5):637–646. [PubMed] [Google Scholar]
- Desjardins M., Gros F., Wieslander J., Gubler M. C., Bendayan M. Immunogold studies of monomeric elements from the globular domain (NC1) of type IV collagen in renal basement membranes during experimental diabetes in the rat. Diabetologia. 1990 Nov;33(11):661–670. doi: 10.1007/BF00400567. [DOI] [PubMed] [Google Scholar]
- Dziadek M., Timpl R. Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells. Dev Biol. 1985 Oct;111(2):372–382. doi: 10.1016/0012-1606(85)90491-9. [DOI] [PubMed] [Google Scholar]
- Ekblom M., Klein G., Mugrauer G., Fecker L., Deutzmann R., Timpl R., Ekblom P. Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell. 1990 Jan 26;60(2):337–346. doi: 10.1016/0092-8674(90)90748-4. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Alitalo K., Vaheri A., Timpl R., Saxén L. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci U S A. 1980 Jan;77(1):485–489. doi: 10.1073/pnas.77.1.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekblom P. Formation of basement membranes in the embryonic kidney: an immunohistological study. J Cell Biol. 1981 Oct;91(1):1–10. doi: 10.1083/jcb.91.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ekblom P., Lehtonen E., Saxén L., Timpl R. Shift in collagen type as an early response to induction of the metanephric mesenchyme. J Cell Biol. 1981 May;89(2):276–283. doi: 10.1083/jcb.89.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitch J. M., Gibney E., Sanderson R. D., Mayne R., Linsenmayer T. F. Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen. J Cell Biol. 1982 Nov;95(2 Pt 1):641–647. doi: 10.1083/jcb.95.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant D. S., Leblond C. P., Kleinman H. K., Inoue S., Hassell J. R. The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 degrees C yields basement membrane-like structures. J Cell Biol. 1989 Apr;108(4):1567–1574. doi: 10.1083/jcb.108.4.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hogan B. L., Taylor A., Kurkinen M., Couchman J. R. Synthesis and localization of two sulphated glycoproteins associated with basement membranes and the extracellular matrix. J Cell Biol. 1982 Oct;95(1):197–204. doi: 10.1083/jcb.95.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson B. G., Wieslander J., Wisdom B. J., Jr, Noelken M. E. Goodpasture syndrome: molecular architecture and function of basement membrane antigen. Lab Invest. 1989 Sep;61(3):256–269. [PubMed] [Google Scholar]
- Kanwar Y. S., Farquhar M. G. Isolation of glycosaminoglycans (heparan sulfate) from glomerular basement membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4493–4497. doi: 10.1073/pnas.76.9.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerjaschki D., Sawada H., Farquhar M. G. Immunoelectron microscopy in kidney research: some contributions and limitations. Kidney Int. 1986 Aug;30(2):229–245. doi: 10.1038/ki.1986.175. [DOI] [PubMed] [Google Scholar]
- Kleppel M. M., Michael A. F. Expression of novel basement membrane components in the developing human kidney and eye. Am J Anat. 1990 Feb;187(2):165–174. doi: 10.1002/aja.1001870205. [DOI] [PubMed] [Google Scholar]
- Kleppel M. M., Michael A. F., Fish A. J. Comparison of non-collagenous type IV collagen components in the human glomerulus and EHS tumor. Biochim Biophys Acta. 1986 Sep 4;883(2):178–189. doi: 10.1016/0304-4165(86)90307-7. [DOI] [PubMed] [Google Scholar]
- Korhonen M., Ylänne J., Laitinen L., Virtanen I. The alpha 1-alpha 6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J Cell Biol. 1990 Sep;111(3):1245–1254. doi: 10.1083/jcb.111.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langeveld J. P., Wieslander J., Timoneda J., McKinney P., Butkowski R. J., Wisdom B. J., Jr, Hudson B. G. Structural heterogeneity of the noncollagenous domain of basement membrane collagen. J Biol Chem. 1988 Jul 25;263(21):10481–10488. [PubMed] [Google Scholar]
- Laurie G. W., Horikoshi S., Killen P. D., Segui-Real B., Yamada Y. In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney. J Cell Biol. 1989 Sep;109(3):1351–1362. doi: 10.1083/jcb.109.3.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie G. W., Leblond C. P., Cournil I., Martin G. R. Immunohistochemical evidence for the intracellular formation of basement membrane collagen (type IV) in developing tissues. J Histochem Cytochem. 1980 Dec;28(12):1267–1274. doi: 10.1177/28.12.6164715. [DOI] [PubMed] [Google Scholar]
- Laurie G. W., Leblond C. P., Inoue S., Martin G. R., Chung A. Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am J Anat. 1984 Apr;169(4):463–481. doi: 10.1002/aja.1001690408. [DOI] [PubMed] [Google Scholar]
- Lelongt B., Makino H., Dalecki T. M., Kanwar Y. S. Role of proteoglycans in renal development. Dev Biol. 1988 Aug;128(2):256–276. doi: 10.1016/0012-1606(88)90289-8. [DOI] [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- Michael A. F., Yang J. Y., Falk R. J., Bennington M. J., Scheinman J. I., Vernier R. L., Fish A. J. Monoclonal antibodies to human renal basement membranes: heterogenic and ontogenic changes. Kidney Int. 1983 Jul;24(1):74–86. doi: 10.1038/ki.1983.128. [DOI] [PubMed] [Google Scholar]
- Mounier F., Foidart J. M., Gubler M. C. Distribution of extracellular matrix glycoproteins during normal development of human kidney. An immunohistochemical study. Lab Invest. 1986 Apr;54(4):394–401. [PubMed] [Google Scholar]
- Paulsson M., Aumailley M., Deutzmann R., Timpl R., Beck K., Engel J. Laminin-nidogen complex. Extraction with chelating agents and structural characterization. Eur J Biochem. 1987 Jul 1;166(1):11–19. doi: 10.1111/j.1432-1033.1987.tb13476.x. [DOI] [PubMed] [Google Scholar]
- Reeves W. H., Kanwar Y. S., Farquhar M. G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol. 1980 Jun;85(3):735–753. doi: 10.1083/jcb.85.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves W., Caulfield J. P., Farquhar M. G. Differentiation of epithelial foot processes and filtration slits: sequential appearance of occluding junctions, epithelial polyanion, and slit membranes in developing glomeruli. Lab Invest. 1978 Aug;39(2):90–100. [PubMed] [Google Scholar]
- Sariola H., Timpl R., von der Mark K., Mayne R., Fitch J. M., Linsenmayer T. F., Ekblom P. Dual origin of glomerular basement membrane. Dev Biol. 1984 Jan;101(1):86–96. doi: 10.1016/0012-1606(84)90119-2. [DOI] [PubMed] [Google Scholar]
- Saxén L., Sariola H., Lehtonen E. Sequential cell and tissue interactions governing organogenesis of the kidney. Anat Embryol (Berl) 1986;175(1):1–6. doi: 10.1007/BF00315450. [DOI] [PubMed] [Google Scholar]
- Schaeverbeke J., Cheignon M. Differentiation of glomerular filter and tubular reabsorption apparatus during foetal development of the rat kidney. J Embryol Exp Morphol. 1980 Aug;58:157–175. [PubMed] [Google Scholar]
- Schittny J. C., Timpl R., Engel J. High resolution immunoelectron microscopic localization of functional domains of laminin, nidogen, and heparan sulfate proteoglycan in epithelial basement membrane of mouse cornea reveals different topological orientations. J Cell Biol. 1988 Oct;107(4):1599–1610. doi: 10.1083/jcb.107.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stow J. L., Sawada H., Farquhar M. G. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci U S A. 1985 May;82(10):3296–3300. doi: 10.1073/pnas.82.10.3296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Timpl R., Dziadek M., Fujiwara S., Nowack H., Wick G. Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem. 1983 Dec 15;137(3):455–465. doi: 10.1111/j.1432-1033.1983.tb07849.x. [DOI] [PubMed] [Google Scholar]
- Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem. 1989 Apr 1;180(3):487–502. doi: 10.1111/j.1432-1033.1989.tb14673.x. [DOI] [PubMed] [Google Scholar]
- VERNIER R. L., BIRCH-ANDERSEN A. Studies of the human fetal kidney. I. Development of the glomerulus. J Pediatr. 1962 May;60:754–768. doi: 10.1016/s0022-3476(62)80103-6. [DOI] [PubMed] [Google Scholar]
- VERNIER R. L., BIRCH-ANDERSEN A. Studies of the human fetal kidney. II. Permeability characteristics of the developing glomerulus. J Ultrastruct Res. 1963 Feb;8:66–88. doi: 10.1016/s0022-5320(63)80021-0. [DOI] [PubMed] [Google Scholar]
- Wan Y. J., Wu T. C., Chung A. E., Damjanov I. Monoclonal antibodies to laminin reveal the heterogeneity of basement membranes in the developing and adult mouse tissues. J Cell Biol. 1984 Mar;98(3):971–979. doi: 10.1083/jcb.98.3.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wingen A. M., Döhner H., Schärer K., Rauterberg E. W. Evidence for developmental changes of type IV collagen in glomerular basement membrane. Nephron. 1987;45(4):302–305. doi: 10.1159/000184168. [DOI] [PubMed] [Google Scholar]
- Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]
- Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Models for the self-assembly of basement membrane. J Histochem Cytochem. 1986 Jan;34(1):93–102. doi: 10.1177/34.1.3510247. [DOI] [PubMed] [Google Scholar]