Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 May 2;113(4):805–815. doi: 10.1083/jcb.113.4.805

Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers

PMCID: PMC2288984  PMID: 2026651

Abstract

Before forming a monopolar attachment to the closest spindle pole, chromosomes attaching in newt (Taricha granulosa) pneumocytes generally reside in an optically clear region of cytoplasm that is largely devoid of cytoskeletal components, organelles, and other chromosomes. We have previously demonstrated that chromosome attachment in these cells occurs when an astral microtubule contacts one of the kinetochores (Hayden, J., S. S. Bowser, and C. L. Rieder. 1990. J. Cell Biol. 111:1039-1045), and that once this association is established the chromosome can be transported poleward along the surface of the microtubule (Rieder, C. L., and S. P. Alexander. 1990. J. Cell Biol. 110:81-95). In the study reported here we used video enhanced differential interference contrast light microscopy and digital image processing to compare, at high spatial and temporal resolution (0.1 microns and 0.93 s, respectively), the microtubule-mediated poleward movement of attaching chromosomes and poleward moving particles on the spindle. The results of this analysis demonstrate obvious similarities between minus end-directed particle motion on the newt pneumocyte spindle and the motion of attaching chromosomes. This is consistent with the hypothesis that both are driven by a similar force-generating mechanism. We then used the Brownian displacements of particles in the vicinity of attaching chromosomes to calculate the apparent viscosity of cytoplasm through which the chromosomes were moving. From these data, and that from our kinetic analyses and previous work, we calculate the force-producing potential of nascent kinetochore fibers in newt pneumocytes to be approximately 0.1-7.4 x 10(-6) dyn/microtubule) This is essentially equivalent to that calculated by Nicklas (Nicklas, R.B. 1988. Annu. Rev. Biophys. Biophys. Chem. 17:431- 449) for prometaphase (4 x 10(-6) dyn/microtubule) and anaphase (5 x 10(-6) dyn/microtubule) chromosomes in Melanoplus. Thus, within the limits of experimental error, there appears to be a remarkable consistency in force production per microtubule throughout the various stages of mitosis and between groups of diverse taxonomic affinities.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Metuzals J., Tasaki I., Brady S. T., Gilbert S. P. Fast axonal transport in squid giant axon. Science. 1982 Dec 10;218(4577):1127–1129. doi: 10.1126/science.6183744. [DOI] [PubMed] [Google Scholar]
  2. Bajer A. S. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol. 1982 Apr;93(1):33–48. doi: 10.1083/jcb.93.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breuer A. C., Christian C. N., Henkart M., Nelson P. G. Computer analysis of organelle translocation in primary neuronal cultures and continuous cell lines. J Cell Biol. 1975 Jun;65(3):562–576. doi: 10.1083/jcb.65.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forer A. Do anaphase chromosomes chew their way to the pole or are they pulled by actin? J Cell Sci. 1988 Dec;91(Pt 4):449–453. doi: 10.1242/jcs.91.4.449. [DOI] [PubMed] [Google Scholar]
  5. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  6. Gibbons I. R. Dynein ATPases as microtubule motors. J Biol Chem. 1988 Nov 5;263(31):15837–15840. [PubMed] [Google Scholar]
  7. Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayden J. H., Bowser S. S., Rieder C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J Cell Biol. 1990 Sep;111(3):1039–1045. doi: 10.1083/jcb.111.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hays T. S., Salmon E. D. Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules. J Cell Biol. 1990 Feb;110(2):391–404. doi: 10.1083/jcb.110.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hyman A. A., Mitchison T. J. Modulation of microtubule stability by kinetochores in vitro. J Cell Biol. 1990 May;110(5):1607–1616. doi: 10.1083/jcb.110.5.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luby-Phelps K., Taylor D. L., Lanni F. Probing the structure of cytoplasm. J Cell Biol. 1986 Jun;102(6):2015–2022. doi: 10.1083/jcb.102.6.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mandeville E. C., Rieder C. L. Keratin filaments restrict organelle migration into the forming spindle of newt pneumocytes. Cell Motil Cytoskeleton. 1990;15(2):111–120. doi: 10.1002/cm.970150207. [DOI] [PubMed] [Google Scholar]
  13. Mastro A. M., Keith A. D. Diffusion in the aqueous compartment. J Cell Biol. 1984 Jul;99(1 Pt 2):180s–187s. doi: 10.1083/jcb.99.1.180s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McIntosh J. R., Koonce M. P. Mitosis. Science. 1989 Nov 3;246(4930):622–628. doi: 10.1126/science.2683078. [DOI] [PubMed] [Google Scholar]
  15. Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  17. NICKLAS R. B. CHROMOSOME VELOCITY DURING MITOSIS AS A FUNCTION OF CHROMOSOME SIZE AND POSITION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:135. doi: 10.1083/jcb.25.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nicklas R. B. Chromosome movement: current models and experiments on living cells. Soc Gen Physiol Ser. 1975;30:97–117. [PubMed] [Google Scholar]
  19. Nicklas R. B. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol. 1983 Aug;97(2):542–548. doi: 10.1083/jcb.97.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nicklas R. B. The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem. 1988;17:431–449. doi: 10.1146/annurev.bb.17.060188.002243. [DOI] [PubMed] [Google Scholar]
  21. Nicklas R. B. The motor for poleward chromosome movement in anaphase is in or near the kinetochore. J Cell Biol. 1989 Nov;109(5):2245–2255. doi: 10.1083/jcb.109.5.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paschal B. M., Shpetner H. S., Vallee R. B. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol. 1987 Sep;105(3):1273–1282. doi: 10.1083/jcb.105.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  24. Pfarr C. M., Coue M., Grissom P. M., Hays T. S., Porter M. E., McIntosh J. R. Cytoplasmic dynein is localized to kinetochores during mitosis. Nature. 1990 May 17;345(6272):263–265. doi: 10.1038/345263a0. [DOI] [PubMed] [Google Scholar]
  25. Pollard T. D. Molecular architecture of the cytoplasmic matrix. Kroc Found Ser. 1984;16:75–86. [PubMed] [Google Scholar]
  26. Porter K. R. The cytomatrix: a short history of its study. J Cell Biol. 1984 Jul;99(1 Pt 2):3s–12s. doi: 10.1083/jcb.99.1.3s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
  28. Rickards G. K. Prophase chromosome movements in living house cricket spermatocytes and their relationship to prometaphase, anaphase and granule movements. Chromosoma. 1975;49(4):407–455. doi: 10.1007/BF00285133. [DOI] [PubMed] [Google Scholar]
  29. Rieder C. L., Alexander S. P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol. 1990 Jan;110(1):81–95. doi: 10.1083/jcb.110.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rieder C. L. Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction. Electron Microsc Rev. 1990;3(2):269–300. doi: 10.1016/0892-0354(90)90005-d. [DOI] [PubMed] [Google Scholar]
  32. Rieder C. L., Hard R. Newt lung epithelial cells: cultivation, use, and advantages for biomedical research. Int Rev Cytol. 1990;122:153–220. doi: 10.1016/s0074-7696(08)61208-5. [DOI] [PubMed] [Google Scholar]
  33. Rieder C. L. Mitosis: towards a molecular understanding of chromosome behavior. Curr Opin Cell Biol. 1991 Feb;3(1):59–66. doi: 10.1016/0955-0674(91)90166-v. [DOI] [PubMed] [Google Scholar]
  34. Rieder C. L. The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol. 1982;79:1–58. doi: 10.1016/s0074-7696(08)61672-1. [DOI] [PubMed] [Google Scholar]
  35. Ris H. The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J Cell Biol. 1985 May;100(5):1474–1487. doi: 10.1083/jcb.100.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Roos U. P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma. 1976 Mar 10;54(4):363–385. doi: 10.1007/BF00292816. [DOI] [PubMed] [Google Scholar]
  37. Sato M., Wong T. Z., Allen R. D. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium. J Cell Biol. 1983 Oct;97(4):1089–1097. doi: 10.1083/jcb.97.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schaap C. J., Forer A. Temperature effects on anaphase chromosome movement in the spermatocytes of two species of crane flies (Nephrotoma suturalis Loew and Nephrotoma ferruginea Fabricius). J Cell Sci. 1979 Oct;39:29–52. doi: 10.1242/jcs.39.1.29. [DOI] [PubMed] [Google Scholar]
  39. Schnapp B. J., Reese T. S. Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1548–1552. doi: 10.1073/pnas.86.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  41. Sheetz M. P., Turney S., Qian H., Elson E. L. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989 Jul 27;340(6231):284–288. doi: 10.1038/340284a0. [DOI] [PubMed] [Google Scholar]
  42. Steuer E. R., Wordeman L., Schroer T. A., Sheetz M. P. Localization of cytoplasmic dynein to mitotic spindles and kinetochores. Nature. 1990 May 17;345(6272):266–268. doi: 10.1038/345266a0. [DOI] [PubMed] [Google Scholar]
  43. Stossel T. P. The structure of cortical cytoplasm. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):275–289. doi: 10.1098/rstb.1982.0132. [DOI] [PubMed] [Google Scholar]
  44. Tippit D. H., Pickett-Heaps J. D., Leslie R. Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase. J Cell Biol. 1980 Aug;86(2):402–416. doi: 10.1083/jcb.86.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Valberg P. A., Albertini D. F. Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method. J Cell Biol. 1985 Jul;101(1):130–140. doi: 10.1083/jcb.101.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vallee R. B., Shpetner H. S., Paschal B. M. The role of dynein and other microtubule-activated ATPases in mitosis. Prog Clin Biol Res. 1989;318:205–215. [PubMed] [Google Scholar]
  47. Vallee R. Mitosis: dynein and the kinetochore. Nature. 1990 May 17;345(6272):206–207. doi: 10.1038/345206a0. [DOI] [PubMed] [Google Scholar]
  48. Weiss D. G., Keller F., Gulden J., Maile W. Towards a new classification of intracellular particle movements based on quantitative analyses. Cell Motil Cytoskeleton. 1986;6(2):128–135. doi: 10.1002/cm.970060210. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES