Abstract
We have investigated the time course of expression of the alpha and beta triad junctional foot proteins in embryonic chick pectoral muscle. The level of [3H]ryanodine binding in muscle homogenates is low until day E20 of embryonic development, then increases dramatically at the time of hatching reaching adult levels by day N7 posthatch. The alpha and beta foot protein isoforms increase in abundance concomitantly with [3H]ryanodine binding. Using foot protein isoform-specific antibodies, the alpha foot protein is detected in a majority of fibers in day E10 muscle, while the beta isoform is first observed at low levels in a few fibers in day E15 muscle. A high molecular weight polypeptide, distinct from the alpha and beta proteins, is recognized by antifoot protein antibodies. This polypeptide is observed in day E8 muscle and declines in abundance with continued development. It appears to exist as a monomer and does not bind [3H]ryanodine. In contrast, the alpha isoform present in day E10 muscle and the beta isoform in day E20 muscle are oligomeric and bind [3H]ryanodine suggesting that they may exist as functional calcium channels in differentiating muscle. Comparison of the intracellular distributions of the alpha foot protein, f-actin, the heavy chain of myosin and titin in day E10 muscle indicates that the alpha foot protein is expressed during myofibril assembly and Z line formation. The differential expression of the foot protein isoforms in developing muscle, and their continued expression in mature muscle, is consistent with these proteins making different functional contributions. In addition, the expression of the alpha isoform during the time of organization of a differentiated muscle morphology suggests that foot proteins may participate in events involved in muscle differentiation.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abramson S. N., Ellisman M. H., Deerinck T. J., Maulet Y., Gentry M. K., Doctor B. P., Taylor P. Differences in structure and distribution of the molecular forms of acetylcholinesterase. J Cell Biol. 1989 Jun;108(6):2301–2311. doi: 10.1083/jcb.108.6.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Airey J. A., Beck C. F., Murakami K., Tanksley S. J., Deerinck T. J., Ellisman M. H., Sutko J. L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J Biol Chem. 1990 Aug 25;265(24):14187–14194. [PubMed] [Google Scholar]
- Bruns R. F., Lawson-Wendling K., Pugsley T. A. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal Biochem. 1983 Jul 1;132(1):74–81. doi: 10.1016/0003-2697(83)90427-x. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Brunschwig J. P. Identification and extraction of proteins that compose the triad junction of skeletal muscle. J Cell Biol. 1984 Sep;99(3):929–939. doi: 10.1083/jcb.99.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hymel L., Inui M., Fleischer S., Schindler H. Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci U S A. 1988 Jan;85(2):441–445. doi: 10.1073/pnas.85.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J Cell Biol. 1968 Jul;38(1):51–66. doi: 10.1083/jcb.38.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaprielian Z., Fambrough D. M. Expression of fast and slow isoforms of the Ca2+-ATPase in developing chick skeletal muscle. Dev Biol. 1987 Dec;124(2):490–503. doi: 10.1016/0012-1606(87)90502-1. [DOI] [PubMed] [Google Scholar]
- Kidokoro Y., Saito M. Early cross-striation formation in twitching Xenopus myocytes in culture. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1978–1982. doi: 10.1073/pnas.85.6.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lai F. A., Erickson H. P., Rousseau E., Liu Q. Y., Meissner G. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature. 1988 Jan 28;331(6154):315–319. doi: 10.1038/331315a0. [DOI] [PubMed] [Google Scholar]
- Lai F. A., Misra M., Xu L., Smith H. A., Meissner G. The ryanodine receptor-Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum. Evidence for a cooperatively coupled, negatively charged homotetramer. J Biol Chem. 1989 Oct 5;264(28):16776–16785. [PubMed] [Google Scholar]
- Martonosi A. Membrane transport during development in animals. Biochim Biophys Acta. 1975 Oct 31;415(3):311–333. doi: 10.1016/0304-4157(75)90012-x. [DOI] [PubMed] [Google Scholar]
- Navarro J. Modulation of [3H]dihydropyridine receptors by activation of protein kinase C in chick muscle cells. J Biol Chem. 1987 Apr 5;262(10):4649–4652. [PubMed] [Google Scholar]
- Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
- Pezzementi L., Schmidt J. Ryanodine alters the rate of acetylcholine receptor synthesis in chick skeletal muscle cell cultures. J Biol Chem. 1981 Dec 25;256(24):12651–12654. [PubMed] [Google Scholar]
- Reik L. M., Maines S. L., Ryan D. E., Levin W., Bandiera S., Thomas P. E. A simple, non-chromatographic purification procedure for monoclonal antibodies. Isolation of monoclonal antibodies against cytochrome P450 isozymes. J Immunol Methods. 1987 Jun 26;100(1-2):123–130. doi: 10.1016/0022-1759(87)90180-3. [DOI] [PubMed] [Google Scholar]
- Schmid A., Renaud J. F., Fosset M., Meaux J. P., Lazdunski M. The nitrendipine-sensitive Ca2+ channel in chick muscle cells and its appearance during myogenesis in vitro and in vivo. J Biol Chem. 1984 Sep 25;259(18):11366–11372. [PubMed] [Google Scholar]
- Schmidt J., Rossie S., Catterall W. A. A large intracellular pool of inactive Na channel alpha subunits in developing rat brain. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4847–4851. doi: 10.1073/pnas.82.14.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuyasu K. T., Maher P. A. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. I. Presence of immunofluorescent titin spots in premyofibril stages. J Cell Biol. 1987 Dec;105(6 Pt 1):2781–2793. doi: 10.1083/jcb.105.6.2781. [DOI] [PMC free article] [PubMed] [Google Scholar]