Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 1;113(5):1043–1055. doi: 10.1083/jcb.113.5.1043

Three-dimensional reconstruction of a simple Z-band in fish muscle

PMCID: PMC2289020  PMID: 2040643

Abstract

The three-dimensional structure of the Z-band in fish white muscle has been investigated by electron microscopy. This Z-band is described as simple, since in longitudinal sections it has the appearance of a single zigzag pattern connecting the ends of actin filaments of opposite polarity from adjacent sarcomeres. The reconstruction shows two pairs of links, the Z-links, between one actin filament and the facing four actin filaments in the adjacent sarcomere. The members of each pair have nearly diametrically opposed origins. In relation to one actin filament, one pair of links appears to bind along the final 10 nm of the actin filament (proximal site) and the other pair binds along a region extending from 5 to 20 nm from the filament end (distal site). Between one pair and the other, there is a rotation of approximately 80 degrees round the filament axis. A Z-link with a proximal site at the end of one actin filament attaches at a distal site on the oppositely oriented actin filaments of the facing sarcomere and vice versa. The length of each Z-link is consistent with the length of an alpha-actinin molecule. An additional set of links located 10-15 nm from the center of the Z-band occurs between actin filaments of the same polarity. These polar links connect the actin filaments along the same direction on each side of the Z-band. The three-dimensional structure appears to have twofold screw symmetry about the central plane of the Z-band. Only approximate twofold rotational symmetry is observed in directions parallel to the actin filaments. Previous models of the Z-band in which four identical and rotationally symmetrical links emanate from the end of one actin filament and span across to the ends of four actin filaments in the adjacent sarcomere are therefore incorrect.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
  2. Blanchard A., Ohanian V., Critchley D. The structure and function of alpha-actinin. J Muscle Res Cell Motil. 1989 Aug;10(4):280–289. doi: 10.1007/BF01758424. [DOI] [PubMed] [Google Scholar]
  3. Casella J. F., Craig S. W., Maack D. J., Brown A. E. Cap Z(36/32), a barbed end actin-capping protein, is a component of the Z-line of skeletal muscle. J Cell Biol. 1987 Jul;105(1):371–379. doi: 10.1083/jcb.105.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng N. Q., Deatherage J. F. Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol. 1989 May;108(5):1761–1774. doi: 10.1083/jcb.108.5.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chowrashi P. K., Pepe F. A. The Z-band: 85,000-dalton amorphin and alpha-actinin and their relation to structure. J Cell Biol. 1982 Sep;94(3):565–573. doi: 10.1083/jcb.94.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deatherage J. F., Cheng N. Q., Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol. 1989 May;108(5):1775–1782. doi: 10.1083/jcb.108.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egelman E. H., Francis N., DeRosier D. J. F-actin is a helix with a random variable twist. Nature. 1982 Jul 8;298(5870):131–135. doi: 10.1038/298131a0. [DOI] [PubMed] [Google Scholar]
  8. Franzini-Armstrong C. The structure of a simple Z line. J Cell Biol. 1973 Sep;58(3):630–642. doi: 10.1083/jcb.58.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldstein M. A., Michael L. H., Schroeter J. P., Sass R. L. Z band dynamics as a function of sarcomere length and the contractile state of muscle. FASEB J. 1987 Aug;1(2):133–142. doi: 10.1096/fasebj.1.2.3609610. [DOI] [PubMed] [Google Scholar]
  10. Goldstein M. A., Schroeter J. P., Sass R. L. The Z lattice in canine cardiac muscle. J Cell Biol. 1979 Oct;83(1):187–204. doi: 10.1083/jcb.83.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein M. A., Schroeter J. P., Sass R. L. The Z-band lattice in a slow skeletal muscle. J Muscle Res Cell Motil. 1982 Sep;3(3):333–348. doi: 10.1007/BF00713041. [DOI] [PubMed] [Google Scholar]
  12. Goll D. E., Mommaerts W. F., Reedy M. K., Seraydarian K. Studies on alpha-actinin-like proteins liberated during trypsin digestion of alpha-actinin and of myofibrils. Biochim Biophys Acta. 1969 Feb 4;175(1):174–194. doi: 10.1016/0005-2795(69)90156-1. [DOI] [PubMed] [Google Scholar]
  13. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  14. KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Luther P. K., Crowther R. A. Three-dimensional reconstruction from tilted sections of fish muscle M-band. Nature. 1984 Feb 9;307(5951):566–568. doi: 10.1038/307566a0. [DOI] [PubMed] [Google Scholar]
  16. Luther P. K., Lawrence M. C., Crowther R. A. A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy. 1988;24(1):7–18. doi: 10.1016/0304-3991(88)90322-1. [DOI] [PubMed] [Google Scholar]
  17. Macdonald R. D., Engel A. G. Observations on organization of Z-disk components and on rod-bodies of Z-disk origin. J Cell Biol. 1971 Feb;48(2):431–437. doi: 10.1083/jcb.48.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morris E. P., Nneji G., Squire J. M. The three-dimensional structure of the nemaline rod Z-band. J Cell Biol. 1990 Dec;111(6 Pt 2):2961–2978. doi: 10.1083/jcb.111.6.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rome L. C., Funke R. P., Alexander R. M., Lutz G., Aldridge H., Scott F., Freadman M. Why animals have different muscle fibre types. Nature. 1988 Oct 27;335(6193):824–827. doi: 10.1038/335824a0. [DOI] [PubMed] [Google Scholar]
  20. Rowe R. W. The ultrastructure of Z disks from white, intermediate, and red fibers of mammalian striated muscles. J Cell Biol. 1973 May;57(2):261–277. doi: 10.1083/jcb.57.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki A., Goll D. E., Singh I., Allen R. E., Robson R. M., Stromer M. H. Some properties of purified skeletal muscle alpha-actinin. J Biol Chem. 1976 Nov 10;251(21):6860–6870. [PubMed] [Google Scholar]
  22. Yamaguchi M., Izumimoto M., Robson R. M., Stromer M. H. Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol. 1985 Aug 20;184(4):621–643. doi: 10.1016/0022-2836(85)90308-0. [DOI] [PubMed] [Google Scholar]
  23. Yamaguchi M., Robson R. M., Stromer M. H., Cholvin N. R., Izumimoto M. Properties of soleus muscle Z-lines and induced Z-line analogs revealed by dissection with Ca2+-activated neutral protease. Anat Rec. 1983 Aug;206(4):345–362. doi: 10.1002/ar.1092060402. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES