Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 1;113(5):1183–1192. doi: 10.1083/jcb.113.5.1183

Epithelial cell differentiation in normal and transgenic mouse intestinal isografts

PMCID: PMC2289022  PMID: 2040647

Abstract

Transgenes consisting of segments of the rat liver fatty acid-binding protein (L-FABP) gene's 5' non-transcribed domain linked to the human growth hormone (hGH) gene (minus its regulatory elements) have provided useful tools for analyzing the mechanisms that regulate cellular and spatial differentiation of the continuously renewing gut epithelium. We have removed the jejunum from normal and transgenic fetal mice before or coincident with, cytodifferentiation of its epithelium. These segments were implanted into the subcutaneous tissues of young adult CBY/B6 nude mouse hosts to determine whether the bipolar, migration- dependent differentiation pathways of gut epithelial cells can be established and maintained in the absence of its normal luminal environment. Immunocytochemical analysis of isografts harvested 4-6 wk after implantation revealed that activation of the intact endogenous mouse L-FABP gene (fabpl) in differentiating enterocytes is perfectly recapitulated as these cells are translocated along the crypt-to-villus axis. Similarly, Paneth and goblet cells appear to appropriately differentiate as they migrate to the crypt base and villus tip, respectively. The enteroendocrine cell subpopulations present in intact 4-6-wk-old jejunum are represented in these isografts. Their precise spatial distribution along the crypt-to-villus axis mimics that seen in the intact gut. A number of complex interrelationships between enteroendocrine subpopulations are also recapitulated. In both "intact" and isografted jejunum, nucleotides -596 to +21 of the rat L-FABP gene were sufficient to direct efficient expression of the hGH reporter to enterocytes although precocious expression of the transgene occurred in cells located in the upper crypt, before their translocation to the villus base. Inappropriate expression of hGH occurred in a high percentage (greater than 80%) of secretin, gastrin, cholecystokinin, and gastric inhibitory peptide producing enteroendocrine cells present in the intact jejunum of 4-6-wk-old L-FABP-596 to +21/hGH transgenics. Addition of nucleotides -597 to -4,000 reduced the percentage of cells co-expressing this reporter four- to eightfold in several of the subpopulations. Jejunal isografts from each transgenic pedigree studied contained a lower percentage of hGH positive enteroendocrine cells than in the comparably aged intact jejunum.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann G. G., Leblond C. P. Factors influencing villus size in the small intestine of adult rats as revealed by transposition of intestinal segments. Am J Anat. 1970 Jan;127(1):15–36. doi: 10.1002/aja.1001270104. [DOI] [PubMed] [Google Scholar]
  2. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat. 1974 Dec;141(4):503–519. doi: 10.1002/aja.1001410405. [DOI] [PubMed] [Google Scholar]
  3. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974 Dec;141(4):537–561. doi: 10.1002/aja.1001410407. [DOI] [PubMed] [Google Scholar]
  4. Cistola D. P., Sacchettini J. C., Banaszak L. J., Walsh M. T., Gordon J. I. Fatty acid interactions with rat intestinal and liver fatty acid-binding proteins expressed in Escherichia coli. A comparative 13C NMR study. J Biol Chem. 1989 Feb 15;264(5):2700–2710. [PubMed] [Google Scholar]
  5. Cooke P. S., Yonemura C. U., Russell S. M., Nicoll C. S. Growth and differentiation of fetal rat intestine transplants: dependence on insulin and growth hormone. Biol Neonate. 1986;49(4):211–218. doi: 10.1159/000242533. [DOI] [PubMed] [Google Scholar]
  6. Dowling R. H. Small bowel adaptation and its regulation. Scand J Gastroenterol Suppl. 1982;74:53–74. [PubMed] [Google Scholar]
  7. Ferguson A., Gerskowitch V. P., Russell R. I. Pre- and postweaning disaccharidase patterns in isografts of fetal mouse intestine. Gastroenterology. 1973 Feb;64(2):292–297. [PubMed] [Google Scholar]
  8. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffiths D. F., Davies S. J., Williams D., Williams G. T., Williams E. D. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature. 1988 Jun 2;333(6172):461–463. doi: 10.1038/333461a0. [DOI] [PubMed] [Google Scholar]
  10. Hauft S. M., Sweetser D. A., Rotwein P. S., Lajara R., Hoppe P. C., Birkenmeier E. H., Gordon J. I. A transgenic mouse model that is useful for analyzing cellular and geographic differentiation of the intestine during fetal development. J Biol Chem. 1989 May 15;264(14):8419–8429. [PubMed] [Google Scholar]
  11. Jolma V. M., Kendall K., Koldovský O. Differences in the development of jejunum and ileum as observed in fetal rat isografts. Possible implications related to the villus size gradient. Am J Anat. 1980 Jun;158(2):211–215. doi: 10.1002/aja.1001580209. [DOI] [PubMed] [Google Scholar]
  12. Kendall K., Jumawan J., Koldovsky O., Krulich L. Effect of the host hormonal status on development of sucrase and acid beta-galactosidase in isografts of rat small intestine. J Endocrinol. 1977 Jul;74(1):145–146. doi: 10.1677/joe.0.0740145. [DOI] [PubMed] [Google Scholar]
  13. Kendall K., Jumawan J., Koldovský O. Development of jejunoileal differences of activity of lactase, sucrase and acid beta-galactosidase in isografts of fetal rat intestine. Biol Neonate. 1979;36(3-4):206–214. doi: 10.1159/000241229. [DOI] [PubMed] [Google Scholar]
  14. Leapman S. B., Deutsch A. A., Grand R. J., Folkman J. Transplantation of fetal intestine: survival and function in a subcutaneous location in adult animals. Ann Surg. 1974 Jan;179(1):109–114. doi: 10.1097/00000658-197401000-00021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lowe J. B., Sacchettini J. C., Laposata M., McQuillan J. J., Gordon J. I. Expression of rat intestinal fatty acid-binding protein in Escherichia coli. Purification and comparison of ligand binding characteristics with that of Escherichia coli-derived rat liver fatty acid-binding protein. J Biol Chem. 1987 Apr 25;262(12):5931–5937. [PubMed] [Google Scholar]
  16. MacDonald M. R., Takeda J., Rice C. M., Krause J. E. Multiple tachykinins are produced and secreted upon post-translational processing of the three substance P precursor proteins, alpha-, beta-, and gamma-preprotachykinin. Expression of the preprotachykinins in AtT-20 cells infected with vaccinia virus recombinants. J Biol Chem. 1989 Sep 15;264(26):15578–15592. [PubMed] [Google Scholar]
  17. McKeel D. W., Jr, Askin F. B. Ectopic hypophyseal hormonal cells in benign cystic teratoma of the ovary. Light microscopic histochemical dye staining and immunoperoxidase cytochemistry. Arch Pathol Lab Med. 1978 Mar;102(3):122–128. [PubMed] [Google Scholar]
  18. Montgomery R. K., Sybicki M. A., Grand R. J. Autonomous biochemical and morphological differentiation in fetal rat intestine transplanted at 17 and 20 days of gestation. Dev Biol. 1981 Oct 15;87(1):76–84. doi: 10.1016/0012-1606(81)90062-2. [DOI] [PubMed] [Google Scholar]
  19. Moser A. R., Pitot H. C., Dove W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990 Jan 19;247(4940):322–324. doi: 10.1126/science.2296722. [DOI] [PubMed] [Google Scholar]
  20. Peeters T., Vantrappen G. The Paneth cell: a source of intestinal lysozyme. Gut. 1975 Jul;16(7):553–558. doi: 10.1136/gut.16.7.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ponder B. A., Schmidt G. H., Wilkinson M. M., Wood M. J., Monk M., Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature. 1985 Feb 21;313(6004):689–691. doi: 10.1038/313689a0. [DOI] [PubMed] [Google Scholar]
  22. Potten C. S., Loeffler M. A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J Theor Biol. 1987 Aug 21;127(4):381–391. doi: 10.1016/s0022-5193(87)80136-4. [DOI] [PubMed] [Google Scholar]
  23. Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  24. Roth K. A., Gordon J. I. Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6408–6412. doi: 10.1073/pnas.87.16.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roth K. A., Hertz J. M., Gordon J. I. Mapping enteroendocrine cell populations in transgenic mice reveals an unexpected degree of complexity in cellular differentiation within the gastrointestinal tract. J Cell Biol. 1990 May;110(5):1791–1801. doi: 10.1083/jcb.110.5.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Roth K. A., Rubin D. C., Birkenmeier E. H., Gordon J. I. Expression of liver fatty acid-binding protein/human growth hormone fusion genes within the enterocyte and enteroendocrine cell populations of fetal transgenic mice. J Biol Chem. 1991 Mar 25;266(9):5949–5954. [PubMed] [Google Scholar]
  27. Rubin D. C., Ong D. E., Gordon J. I. Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1278–1282. doi: 10.1073/pnas.86.4.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schmidt G. H., O'Sullivan J. F., Paul D. Ethylnitrosourea-induced mutations in vivo involving the Dolichos biflorus agglutinin receptor in mouse intestinal epithelium. Mutat Res. 1990 Feb;228(2):149–155. doi: 10.1016/0027-5107(90)90071-b. [DOI] [PubMed] [Google Scholar]
  29. Schmidt G. H., Wilkinson M. M., Ponder B. A. Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell. 1985 Feb;40(2):425–429. doi: 10.1016/0092-8674(85)90156-4. [DOI] [PubMed] [Google Scholar]
  30. Schmidt G. H., Winton D. J., Ponder B. A. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development. 1988 Aug;103(4):785–790. doi: 10.1242/dev.103.4.785. [DOI] [PubMed] [Google Scholar]
  31. Sinha Y. N., Selby F. W., Vanderlaan W. P. The natural history of prolactin and GH secretion in mice with high and low incidence of mammary tumors. Endocrinology. 1974 Mar;94(3):757–764. doi: 10.1210/endo-94-3-757. [DOI] [PubMed] [Google Scholar]
  32. Sweetser D. A., Birkenmeier E. H., Hoppe P. C., McKeel D. W., Gordon J. I. Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev. 1988 Oct;2(10):1318–1332. doi: 10.1101/gad.2.10.1318. [DOI] [PubMed] [Google Scholar]
  33. Sweetser D. A., Birkenmeier E. H., Klisak I. J., Zollman S., Sparkes R. S., Mohandas T., Lusis A. J., Gordon J. I. The human and rodent intestinal fatty acid binding protein genes. A comparative analysis of their structure, expression, and linkage relationships. J Biol Chem. 1987 Nov 25;262(33):16060–16071. [PubMed] [Google Scholar]
  34. Sweetser D. A., Lowe J. B., Gordon J. I. The nucleotide sequence of the rat liver fatty acid-binding protein gene. Evidence that exon 1 encodes an oligopeptide domain shared by a family of proteins which bind hydrophobic ligands. J Biol Chem. 1986 Apr 25;261(12):5553–5561. [PubMed] [Google Scholar]
  35. Tavassoli M., Hardy C. L. Molecular basis of homing of intravenously transplanted stem cells to the marrow. Blood. 1990 Sep 15;76(6):1059–1070. [PubMed] [Google Scholar]
  36. Trahair J. F., Neutra M. R., Gordon J. I. Use of transgenic mice to study the routing of secretory proteins in intestinal epithelial cells: analysis of human growth hormone compartmentalization as a function of cell type and differentiation. J Cell Biol. 1989 Dec;109(6 Pt 2):3231–3242. doi: 10.1083/jcb.109.6.3231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trier J. S., Moxey P. C. Morphogenesis of the small intestine during fetal development. Ciba Found Symp. 1979 Jan 16;(70):3–29. doi: 10.1002/9780470720530.ch2. [DOI] [PubMed] [Google Scholar]
  38. Winton D. J., Blount M. A., Ponder B. A. A clonal marker induced by mutation in mouse intestinal epithelium. Nature. 1988 Jun 2;333(6172):463–466. doi: 10.1038/333463a0. [DOI] [PubMed] [Google Scholar]
  39. Winton D. J., Peacock J. H., Ponder B. A. Effect of gamma radiation at high- and low-dose rate on a novel in vivo mutation assay in mouse intestine. Mutagenesis. 1989 Sep;4(5):404–406. doi: 10.1093/mutage/4.5.404. [DOI] [PubMed] [Google Scholar]
  40. Winton D. J., Ponder B. A. Stem-cell organization in mouse small intestine. Proc Biol Sci. 1990 Jul 23;241(1300):13–18. doi: 10.1098/rspb.1990.0059. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES