Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 2;113(6):1361–1369. doi: 10.1083/jcb.113.6.1361

The intercentriolar linkage is critical for the ability of heterologous centrosomes to induce parthenogenesis in Xenopus

PMCID: PMC2289023  PMID: 2045416

Abstract

Centrosomes isolated from various sources, including human cells, have the capacity to induce parthenogenetic development when injected into unfertilized amphibian eggs. We recently isolated calf thymus centrosomes and showed that they differ structurally and functionally from previously isolated centrosomes of KE37 cells, in that the two centrioles in calf thymocytes are linearly associated by their proximal ends through a mass of electron dense material and nucleate few microtubules from their distal ends (Komesli, S., F. Tournier, M. Paintrand, R. Margolis, D. Job, and M. Bornens. 1989. J. Cell Biol. 109:2869-2878). We report here that these centrosomes are also unable to induce egg cleavage and examine the various possibilities which could account for this lack of competence. The results show that: (a) the kinetics of microtubule assembly on calf thymus centrosomes in Xenopus extracts are comparable to those of KE37 centrosomes; (b) centrosomes isolated from thymus of calves raised under controlled conditions (without anabolic agents) also lack competence; (c) centrosomes isolated from bovine cells of other tissues are competent; (d) centrosomes isolated from thymus of three other species (rat, mouse, and human) are competent. Since the lack of activity of calf thymus centrosomes apparently was not linked to species or tissue differences, we compared the ultrastructure of the centrosomes in the various centrosome preparations. The results show a strict correlation between the linear arrangement of centrioles and the lack of activity of the centrosomes. They suggest that the centrosome cycle can be blocked when the centrioles are prevented from separating into a nonlinear configuration, a step which might be critical for the initiation of procentriole budding. They also indicate that the centrosome may be involved in the G0-G1 transition.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly E., Dorée M., Nurse P., Bornens M. p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. EMBO J. 1989 Dec 20;8(13):3985–3995. doi: 10.1002/j.1460-2075.1989.tb08581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bornens M., Paintrand M., Berges J., Marty M. C., Karsenti E. Structural and chemical characterization of isolated centrosomes. Cell Motil Cytoskeleton. 1987;8(3):238–249. doi: 10.1002/cm.970080305. [DOI] [PubMed] [Google Scholar]
  3. Byers B., Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. doi: 10.1128/jb.124.1.511-523.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans L., Mitchison T., Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol. 1985 Apr;100(4):1185–1191. doi: 10.1083/jcb.100.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Freeman M., Nüsslein-Volhard C., Glover D. M. The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell. 1986 Aug 1;46(3):457–468. doi: 10.1016/0092-8674(86)90666-5. [DOI] [PubMed] [Google Scholar]
  6. Gard D. L., Hafezi S., Zhang T., Doxsey S. J. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 1990 Jun;110(6):2033–2042. doi: 10.1083/jcb.110.6.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara K., Tydeman P., Kirschner M. A cytoplasmic clock with the same period as the division cycle in Xenopus eggs. Proc Natl Acad Sci U S A. 1980 Jan;77(1):462–466. doi: 10.1073/pnas.77.1.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heidemann S. R., Kirschner M. W. Aster formation in eggs of Xenopus laevis. Induction by isolated basal bodies. J Cell Biol. 1975 Oct;67(1):105–117. doi: 10.1083/jcb.67.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karsenti E., Newport J., Hubble R., Kirschner M. Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs. J Cell Biol. 1984 May;98(5):1730–1745. doi: 10.1083/jcb.98.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klotz C., Dabauvalle M. C., Paintrand M., Weber T., Bornens M., Karsenti E. Parthenogenesis in Xenopus eggs requires centrosomal integrity. J Cell Biol. 1990 Feb;110(2):405–415. doi: 10.1083/jcb.110.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kochanski R. S., Borisy G. G. Mode of centriole duplication and distribution. J Cell Biol. 1990 May;110(5):1599–1605. doi: 10.1083/jcb.110.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Komesli S., Tournier F., Paintrand M., Margolis R. L., Job D., Bornens M. Mass isolation of calf thymus centrosomes: identification of a specific configuration. J Cell Biol. 1989 Dec;109(6 Pt 1):2869–2878. doi: 10.1083/jcb.109.6.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuriyama R., Borisy G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol. 1981 Dec;91(3 Pt 1):814–821. doi: 10.1083/jcb.91.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maller J., Poccia D., Nishioka D., Kidd P., Gerhart J., Hartman H. Spindle formation and cleavage in Xenopus eggs injected with centriole-containing fractions from sperm. Exp Cell Res. 1976 May;99(2):285–294. doi: 10.1016/0014-4827(76)90585-1. [DOI] [PubMed] [Google Scholar]
  15. Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
  16. Pardee A. B. G1 events and regulation of cell proliferation. Science. 1989 Nov 3;246(4930):603–608. doi: 10.1126/science.2683075. [DOI] [PubMed] [Google Scholar]
  17. Picard A., Harricane M. C., Labbe J. C., Doree M. Germinal vesicle components are not required for the cell-cycle oscillator of the early starfish embryo. Dev Biol. 1988 Jul;128(1):121–128. doi: 10.1016/0012-1606(88)90273-4. [DOI] [PubMed] [Google Scholar]
  18. Rothenberg E., Lugo J. P. Differentiation and cell division in the mammalian thymus. Dev Biol. 1985 Nov;112(1):1–17. doi: 10.1016/0012-1606(85)90114-9. [DOI] [PubMed] [Google Scholar]
  19. Sherline P., Mascardo R. Epidermal growth factor-induced centrosomal separation: mechanism and relationship to mitogenesis. J Cell Biol. 1982 Oct;95(1):316–322. doi: 10.1083/jcb.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sluder G., Miller F. J., Cole R., Rieder C. L. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J Cell Biol. 1990 Jun;110(6):2025–2032. doi: 10.1083/jcb.110.6.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tournier F., Karsenti E., Bornens M. Parthenogenesis in Xenopus eggs injected with centrosomes from synchronized human lymphoid cells. Dev Biol. 1989 Dec;136(2):321–329. doi: 10.1016/0012-1606(89)90259-5. [DOI] [PubMed] [Google Scholar]
  23. Tucker R. W., Pardee A. B., Fujiwara K. Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell. 1979 Jul;17(3):527–535. doi: 10.1016/0092-8674(79)90261-7. [DOI] [PubMed] [Google Scholar]
  24. Vorobjev I. A., Chentsov YuS Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982 Jun;93(3):938–949. doi: 10.1083/jcb.93.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wade R. H., Chrétien D., Job D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J Mol Biol. 1990 Apr 20;212(4):775–786. doi: 10.1016/0022-2836(90)90236-F. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES