Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 2;113(6):1371–1384. doi: 10.1083/jcb.113.6.1371

Analysis of early events in acetylcholine receptor assembly

PMCID: PMC2289024  PMID: 2045417

Abstract

Mammalian cell lines expressing nicotinic acetylcholine receptor (AChR) subunit cDNAs from Torpedo californica were used to study early events in AChR assembly. To test the hypothesis that individual subunits form homooligomeric intermediates before assembling into alpha 2 beta gamma delta pentamers, we analyzed the sedimentation on sucrose density gradients of each subunit expressed separately in cell lines. We have shown previously that the acute temperature sensitivity of Torpedo AChR subunit assembly is due, in part, to misfolding of the polypeptide chains (Paulson, H.L., and T. Claudio. 1990. J. Cell Biol. 110:1705- 1717). We use this phenomenon to further analyze putative assembly- competent intermediates. In nonionic detergent at an assembly- permissive temperature, the majority of alpha, beta, gamma, and delta subunits sediment neither as 3-4S monomers nor as 9S complexes, but rather as 6S species whether synthesized in fibroblasts, myoblasts, or differentiated myosyncytia. Several results indicate that the 6S species are complexes comprised predominantly of incorrectly folded subunit polypeptides. The complexes represent homoaggregates which form rapidly within the cell, are stable to mild SDS treatment and, in the case of alpha, contain some disulfide-linked subunits. The coprecipitation of alpha subunit with BiP or GRP78, a resident protein of the ER, further indicates that at least some of these internally sequestered subunits also associated with an endogenous protein implicated in protein folding. The majority of subunits expressed in these cell lines appear to be aggregates of subunits which are not assembly intermediates and are not assembly-competent. The portion which migrates as monomer, in contrast, appears to be the fraction which is assembly competent. This fraction increases at temperatures more permissive for assembly, further indicating the importance of the monomer as the precursor to assembly of alpha 2 beta gamma delta pentamers.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Blobel G. Identification of homo-oligomers as potential intermediates in acetylcholine receptor subunit assembly. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4359–4363. doi: 10.1073/pnas.80.14.4359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bole D. G., Hendershot L. M., Kearney J. F. Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas. J Cell Biol. 1986 May;102(5):1558–1566. doi: 10.1083/jcb.102.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7763–7767. doi: 10.1073/pnas.84.21.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Claudio T., Green W. N., Hartman D. S., Hayden D., Paulson H. L., Sigworth F. J., Sine S. M., Swedlund A. Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science. 1987 Dec 18;238(4834):1688–1694. doi: 10.1126/science.3686008. [DOI] [PubMed] [Google Scholar]
  5. Claudio T., Paulson H. L., Green W. N., Ross A. F., Hartman D. S., Hayden D. Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant. J Cell Biol. 1989 Jun;108(6):2277–2290. doi: 10.1083/jcb.108.6.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Claudio T., Raftery M. A. Immunological comparison of acetylcholine receptors and their subunits from species of electric ray. Arch Biochem Biophys. 1977 Jun;181(2):484–489. doi: 10.1016/0003-9861(77)90254-5. [DOI] [PubMed] [Google Scholar]
  7. Claudio T. Stable expression of transfected Torpedo acetylcholine receptor alpha subunits in mouse fibroblast L cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5967–5971. doi: 10.1073/pnas.84.16.5967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Copeland C. S., Doms R. W., Bolzau E. M., Webster R. G., Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol. 1986 Oct;103(4):1179–1191. doi: 10.1083/jcb.103.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doms R. W., Keller D. S., Helenius A., Balch W. E. Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. J Cell Biol. 1987 Nov;105(5):1957–1969. doi: 10.1083/jcb.105.5.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellis J. Proteins as molecular chaperones. 1987 Jul 30-Aug 5Nature. 328(6129):378–379. doi: 10.1038/328378a0. [DOI] [PubMed] [Google Scholar]
  11. Flynn G. C., Chappell T. G., Rothman J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science. 1989 Jul 28;245(4916):385–390. doi: 10.1126/science.2756425. [DOI] [PubMed] [Google Scholar]
  12. Gething M. J., McCammon K., Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. doi: 10.1016/0092-8674(86)90076-0. [DOI] [PubMed] [Google Scholar]
  13. Goldenberg D. P. Genetic studies of protein stability and mechanisms of folding. Annu Rev Biophys Biophys Chem. 1988;17:481–507. doi: 10.1146/annurev.bb.17.060188.002405. [DOI] [PubMed] [Google Scholar]
  14. Green W. N., Ross A. F., Claudio T. cAMP stimulation of acetylcholine receptor expression is mediated through posttranslational mechanisms. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):854–858. doi: 10.1073/pnas.88.3.854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hurtley S. M., Bole D. G., Hoover-Litty H., Helenius A., Copeland C. S. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP). J Cell Biol. 1989 Jun;108(6):2117–2126. doi: 10.1083/jcb.108.6.2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  17. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  18. Kordossi A. A., Tzartos S. J. Conformation of cytoplasmic segments of acetylcholine receptor alpha- and beta-subunits probed by monoclonal antibodies: sensitivity of the antibody competition approach. EMBO J. 1987 Jun;6(6):1605–1610. doi: 10.1002/j.1460-2075.1987.tb02407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Korman A. J., Frantz J. D., Strominger J. L., Mulligan R. C. Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2150–2154. doi: 10.1073/pnas.84.8.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kreis T. E., Lodish H. F. Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell. 1986 Sep 12;46(6):929–937. doi: 10.1016/0092-8674(86)90075-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Machamer C. E., Rose J. K. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding. J Biol Chem. 1988 Apr 25;263(12):5955–5960. [PubMed] [Google Scholar]
  23. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  24. Mayne K. M., Yoshii K., Yu L., Lester H. A., Davidson N. Expression of mouse-Torpedo acetylcholine receptor subunit chimeras and hybrids in Xenopus oocytes. Brain Res. 1987 Sep;388(3):191–197. doi: 10.1016/0169-328x(87)90026-x. [DOI] [PubMed] [Google Scholar]
  25. McCarthy M. P., Earnest J. P., Young E. F., Choe S., Stroud R. M. The molecular neurobiology of the acetylcholine receptor. Annu Rev Neurosci. 1986;9:383–413. doi: 10.1146/annurev.ne.09.030186.002123. [DOI] [PubMed] [Google Scholar]
  26. McEwen C. R. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal Biochem. 1967 Jul;20(1):114–149. doi: 10.1016/0003-2697(67)90271-0. [DOI] [PubMed] [Google Scholar]
  27. Merlie J. P., Lindstrom J. Assembly in vivo of mouse muscle acetylcholine receptor: identification of an alpha subunit species that may be an assembly intermediate. Cell. 1983 Oct;34(3):747–757. doi: 10.1016/0092-8674(83)90531-7. [DOI] [PubMed] [Google Scholar]
  28. Mishina M., Kurosaki T., Tobimatsu T., Morimoto Y., Noda M., Yamamoto T., Terao M., Lindstrom J., Takahashi T., Kuno M. Expression of functional acetylcholine receptor from cloned cDNAs. Nature. 1984 Feb 16;307(5952):604–608. doi: 10.1038/307604a0. [DOI] [PubMed] [Google Scholar]
  29. Paulson H. L., Claudio T. Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells. J Cell Biol. 1990 May;110(5):1705–1717. doi: 10.1083/jcb.110.5.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pelham H. R. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell. 1986 Sep 26;46(7):959–961. doi: 10.1016/0092-8674(86)90693-8. [DOI] [PubMed] [Google Scholar]
  31. Pelham H. Heat-shock proteins. Coming in from the cold. Nature. 1988 Apr 28;332(6167):776–777. doi: 10.1038/332776a0. [DOI] [PubMed] [Google Scholar]
  32. Penn L. J., Brooks M. W., Laufer E. M., Littlewood T. D., Morgenstern J. P., Evan G. I., Lee W. M., Land H. Domains of human c-myc protein required for autosuppression and cooperation with ras oncogenes are overlapping. Mol Cell Biol. 1990 Sep;10(9):4961–4966. doi: 10.1128/mcb.10.9.4961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Popot J. L., Changeux J. P. Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev. 1984 Oct;64(4):1162–1239. doi: 10.1152/physrev.1984.64.4.1162. [DOI] [PubMed] [Google Scholar]
  34. Pritchett D. B., Sontheimer H., Shivers B. D., Ymer S., Kettenmann H., Schofield P. R., Seeburg P. H. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature. 1989 Apr 13;338(6216):582–585. doi: 10.1038/338582a0. [DOI] [PubMed] [Google Scholar]
  35. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  36. Ross A. F., Green W. N., Hartman D. S., Claudio T. Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP. J Cell Biol. 1991 May;113(3):623–636. doi: 10.1083/jcb.113.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sine S. M., Claudio T., Sigworth F. J. Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Single channel current kinetics reveal distinct agonist binding affinities. J Gen Physiol. 1990 Aug;96(2):395–437. doi: 10.1085/jgp.96.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sontheimer H., Becker C. M., Pritchett D. B., Schofield P. R., Grenningloh G., Kettenmann H., Betz H., Seeburg P. H. Functional chloride channels by mammalian cell expression of rat glycine receptor subunit. Neuron. 1989 May;2(5):1491–1497. doi: 10.1016/0896-6273(89)90195-5. [DOI] [PubMed] [Google Scholar]
  39. Sumikawa K., Miledi R. Assembly and N-glycosylation of all ACh receptor subunits are required for their efficient insertion into plasma membranes. Brain Res Mol Brain Res. 1989 May;5(3):183–192. doi: 10.1016/0169-328x(89)90034-x. [DOI] [PubMed] [Google Scholar]
  40. Tzartos S. J., Seybold M. E., Lindstrom J. M. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci U S A. 1982 Jan;79(1):188–192. doi: 10.1073/pnas.79.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES