Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 2;113(6):1385–1397. doi: 10.1083/jcb.113.6.1385

Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions

PMCID: PMC2289028  PMID: 1904446

Abstract

After skeletal muscle is denervated, fibroblasts near neuromuscular junctions proliferate more than fibroblasts distant from synaptic sites, and they accumulate adhesive molecules such as tenascin (Gatchalian, C. L., M. Schachner, and J. R. Sanes. 1989. J. Cell Biol. 108:1873-1890). This response could reflect signals that arise perisynaptically after denervation, preexisting differences between perisynaptic and extrasynaptic fibroblasts, or both. Here, we describe a line of transgenic mice in which patterns of transgene expression provide direct evidence for differences between perisynaptic and extrasynaptic fibroblasts in normal muscle. Transgenic mice were generated using regulatory elements from a major histocompatibility complex (MHC) class I gene linked to the Escherichia coli beta- galactosidase (lacZ) gene. Expression of lacZ was detected histochemically. In each of eight lines, lacZ was detected in different subsets of cells, none of which included lymphocytes. In contrast, endogenous MHC is expressed in most tissues and at high levels in lymphocytes. Thus, the MHC gene sequences appeared inactive in the transgene, and lacZ expression was apparently controlled by genomic regulatory elements that were specific for the insertion site. In one line, cells close to the neuromuscular junction were lacZ positive in embryonic and young postnatal mice. Electron microscopy identified these cells as fibroblasts and Schwann cells associated with motor nerve terminals, as well as endoneurial fibroblasts, perineurial cells, and Schwann cells in the distal branches of motor nerves. No intramuscular cells greater than 200 microns from synaptic sites were lacZ positive. These results indicate that there are molecular differences between perisynaptic and extrasynaptic fibroblasts even in normal muscle and that diverse perisynaptic cell types share a specific pattern of gene expression.

Full Text

The Full Text of this article is available as a PDF (9.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen N. D., Cran D. G., Barton S. C., Hettle S., Reik W., Surani M. A. Transgenes as probes for active chromosomal domains in mouse development. Nature. 1988 Jun 30;333(6176):852–855. doi: 10.1038/333852a0. [DOI] [PubMed] [Google Scholar]
  2. Alpert S., Hanahan D., Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell. 1988 Apr 22;53(2):295–308. doi: 10.1016/0092-8674(88)90391-1. [DOI] [PubMed] [Google Scholar]
  3. BRANWOOD A. W. THE FIBROBLAST. Int Rev Connect Tissue Res. 1963;1:1–28. doi: 10.1016/b978-1-4831-6755-8.50006-1. [DOI] [PubMed] [Google Scholar]
  4. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  5. Bonnerot C., Grimber G., Briand P., Nicolas J. F. Patterns of expression of position-dependent integrated transgenes in mouse embryo. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6331–6335. doi: 10.1073/pnas.87.16.6331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradley W. G., Asbury A. K. Duration of synthesis phase in neuilemma cells in mouse sciatic nerve during degeneration. Exp Neurol. 1970 Feb;26(2):275–282. doi: 10.1016/0014-4886(70)90125-1. [DOI] [PubMed] [Google Scholar]
  7. Bunge M. B., Wood P. M., Tynan L. B., Bates M. L., Sanes J. R. Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science. 1989 Jan 13;243(4888):229–231. doi: 10.1126/science.2492115. [DOI] [PubMed] [Google Scholar]
  8. Connor E. A., McMahan U. J. Cell accumulation in the junctional region of denervated muscle. J Cell Biol. 1987 Jan;104(1):109–120. doi: 10.1083/jcb.104.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Covault J., Sanes J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4544–4548. doi: 10.1073/pnas.82.13.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fahrner K., Hogan B. L., Flavell R. A. Transcription of H-2 and Qa genes in embryonic and adult mice. EMBO J. 1987 May;6(5):1265–1271. doi: 10.1002/j.1460-2075.1987.tb02363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrett D. M., Conrad G. W. Fibroblast-like cells from embryonic chick cornea, heart, and skin are antigenically distinct. Dev Biol. 1979 May;70(1):50–70. doi: 10.1016/0012-1606(79)90006-x. [DOI] [PubMed] [Google Scholar]
  12. Gatchalian C. L., Schachner M., Sanes J. R. Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin(J1), N-CAM, fibronectin, and a heparan sulfate proteoglycan. J Cell Biol. 1989 May;108(5):1873–1890. doi: 10.1083/jcb.108.5.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gossler A., Joyner A. L., Rossant J., Skarnes W. C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989 Apr 28;244(4903):463–465. doi: 10.1126/science.2497519. [DOI] [PubMed] [Google Scholar]
  15. Gray G. E., Glover J. C., Majors J., Sanes J. R. Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7356–7360. doi: 10.1073/pnas.85.19.7356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HOLT S. J., SADLER P. W. Studies in enzyme cytochemistry. II. Synthesis of indigogenic substrates for esterases. Proc R Soc Lond B Biol Sci. 1958 Apr 8;148(933):481–494. doi: 10.1098/rspb.1958.0040. [DOI] [PubMed] [Google Scholar]
  17. Jaenisch R. Transgenic animals. Science. 1988 Jun 10;240(4858):1468–1474. doi: 10.1126/science.3287623. [DOI] [PubMed] [Google Scholar]
  18. KARNOVSKY M. J. THE LOCALIZATION OF CHOLINESTERASE ACTIVITY IN RAT CARDIAC MUSCLE BY ELECTRON MICROSCOPY. J Cell Biol. 1964 Nov;23:217–232. doi: 10.1083/jcb.23.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kimura A., Israël A., Le Bail O., Kourilsky P. Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I gene expression. Cell. 1986 Jan 31;44(2):261–272. doi: 10.1016/0092-8674(86)90760-9. [DOI] [PubMed] [Google Scholar]
  20. Kothary R., Clapoff S., Brown A., Campbell R., Peterson A., Rossant J. A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature. 1988 Sep 29;335(6189):435–437. doi: 10.1038/335435a0. [DOI] [PubMed] [Google Scholar]
  21. Lacy E., Roberts S., Evans E. P., Burtenshaw M. D., Costantini F. D. A foreign beta-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues. Cell. 1983 Sep;34(2):343–358. doi: 10.1016/0092-8674(83)90369-0. [DOI] [PubMed] [Google Scholar]
  22. Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
  23. Mlodzik M., Hiromi Y., Weber U., Goodman C. S., Rubin G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell. 1990 Jan 26;60(2):211–224. doi: 10.1016/0092-8674(90)90737-y. [DOI] [PubMed] [Google Scholar]
  24. Morello D., Moore G., Salmon A. M., Yaniv M., Babinet C. Studies on the expression of an H-2K/human growth hormone fusion gene in giant transgenic mice. EMBO J. 1986 Aug;5(8):1877–1883. doi: 10.1002/j.1460-2075.1986.tb04439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Kane C. J., Gehring W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9123–9127. doi: 10.1073/pnas.84.24.9123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ozato K., Wan Y. J., Orrison B. M. Mouse major histocompatibility class I gene expression begins at midsomite stage and is inducible in earlier-stage embryos by interferon. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2427–2431. doi: 10.1073/pnas.82.8.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Palmiter R. D., Brinster R. L. Germ-line transformation of mice. Annu Rev Genet. 1986;20:465–499. doi: 10.1146/annurev.ge.20.120186.002341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parker R. C. THE FUNCTIONAL CHARACTERISTICS OF NINE RACES OF FIBROBLASTS. Science. 1932 Sep 2;76(1966):219–220. doi: 10.1126/science.76.1966.219-a. [DOI] [PubMed] [Google Scholar]
  29. Russo A. F., Crenshaw E. B., 3rd, Lira S. A., Simmons D. M., Swanson L. W., Rosenfeld M. G. Neuronal expression of chimeric genes in transgenic mice. Neuron. 1988 Jun;1(4):311–320. doi: 10.1016/0896-6273(88)90079-7. [DOI] [PubMed] [Google Scholar]
  30. Salonen V., Aho H., Röyttä M., Peltonen J. Quantitation of Schwann cells and endoneurial fibroblast-like cells after experimental nerve trauma. Acta Neuropathol. 1988;75(4):331–336. doi: 10.1007/BF00687785. [DOI] [PubMed] [Google Scholar]
  31. Sanes J. R. Extracellular matrix molecules that influence neural development. Annu Rev Neurosci. 1989;12:491–516. doi: 10.1146/annurev.ne.12.030189.002423. [DOI] [PubMed] [Google Scholar]
  32. Sanes J. R., Rubenstein J. L., Nicolas J. F. Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 1986 Dec 1;5(12):3133–3142. doi: 10.1002/j.1460-2075.1986.tb04620.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanes J. R., Schachner M., Covault J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol. 1986 Feb;102(2):420–431. doi: 10.1083/jcb.102.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schuetze S. M., Role L. W. Developmental regulation of nicotinic acetylcholine receptors. Annu Rev Neurosci. 1987;10:403–457. doi: 10.1146/annurev.ne.10.030187.002155. [DOI] [PubMed] [Google Scholar]
  35. Wilson C., Pearson R. K., Bellen H. J., O'Kane C. J., Grossniklaus U., Gehring W. J. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 1989 Sep;3(9):1301–1313. doi: 10.1101/gad.3.9.1301. [DOI] [PubMed] [Google Scholar]
  36. Woychik R. P., Maas R. L., Zeller R., Vogt T. F., Leder P. 'Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature. 1990 Aug 30;346(6287):850–853. doi: 10.1038/346850a0. [DOI] [PubMed] [Google Scholar]
  37. al-Shawi R., Kinnaird J., Burke J., Bishop J. O. Expression of a foreign gene in a line of transgenic mice is modulated by a chromosomal position effect. Mol Cell Biol. 1990 Mar;10(3):1192–1198. doi: 10.1128/mcb.10.3.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES