Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jun 2;113(6):1331–1340. doi: 10.1083/jcb.113.6.1331

Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion

PMCID: PMC2289030  PMID: 2045415

Abstract

The electrostatic interactions of cytochrome c with its redox partners and membrane lipids, as well as other protein interactions and biochemical reactions, may be modulated by the ionic strength of the intermembrane space of the mitochondrion. FITC-BSA was used to determine the relative value of the mitochondrial intermembrane ionic strength with respect to bulk medium external to the mitochondrial outer membrane. FITC-BSA exhibited an ionic strength-dependent fluorescence change with an affinity in the mM range as opposed to its pH sensitivity in the microM range. A controlled, low pH-induced membrane fusion procedure was developed to transfer FITC-BSA encapsulated in asolectin liposomes, to the intermembrane space of intact mitochondria. The fusion procedure did not significantly affect mitochondrial ultrastructure, electron transport, or respiratory control ratios. The extent of fusion of liposomes with the mitochondrial outer membrane was monitored by fluorescence dequenching assays using a membrane fluorescent probe (octadecylrhodamine B) and the soluble FITC-BSA fluorescent probe, which report membrane and contents mixing, respectively. Assays were consistent with a rapid, low pH-induced vesicle-outer membrane fusion and delivery of FITC-BSA into the intermembrane space. Similar affinities for the ionic strength- dependent change in fluorescence were found for bulk medium, soluble (9.8 +/- 0.8 mM) and intermembrane space-entrapped FITC-BSA (10.2 +/- 0.6 mM). FITC-BSA consistently reported an ionic strength in the intermembrane space of the functionally and structurally intact mitochondria within +/- 20% of the external bulk solution. These findings reveal that the intermembrane ionic strength changes as does the external ionic strength and suggest that cytochrome c interactions, as well as other protein interactions and biochemical reactions, proceed in the intermembrane space of mitochondria in the intact cell at physiological ionic strength, i.e., 100-150 mM.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAHR G. F., ZEITLER E. Study of mitochondria in rat liver. Quantitative electron microscopy. J Cell Biol. 1962 Dec;15:489–501. doi: 10.1083/jcb.15.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrow D. A., Lentz B. R. Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay. Biophys J. 1985 Aug;48(2):221–234. doi: 10.1016/S0006-3495(85)83775-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentz J., Düzgüneş N., Nir S. Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: evaluation of the kinetic rate constants. Biochemistry. 1985 Feb 12;24(4):1064–1072. doi: 10.1021/bi00325a039. [DOI] [PubMed] [Google Scholar]
  4. Bright G. R., Fisher G. W., Rogowska J., Taylor D. L. Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. 1987 Apr;104(4):1019–1033. doi: 10.1083/jcb.104.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985 Jun 12;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. [DOI] [PubMed] [Google Scholar]
  6. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  7. Gear A. R., Bednarek J. M. Direct counting and sizing of mitochondria in solution. J Cell Biol. 1972 Aug;54(2):325–345. doi: 10.1083/jcb.54.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geren L. M., Millett F. Fluorescence energy transfer studies of the interaction between adrenodoxin and cytochrome c. J Biol Chem. 1981 Oct 25;256(20):10485–10489. [PubMed] [Google Scholar]
  9. Gupte S. S., Hackenbrock C. R. Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners. J Biol Chem. 1988 Apr 15;263(11):5241–5247. [PubMed] [Google Scholar]
  10. Gupte S. S., Hackenbrock C. R. The role of cytochrome c diffusion in mitochondrial electron transport. J Biol Chem. 1988 Apr 15;263(11):5248–5253. [PubMed] [Google Scholar]
  11. Gupte S., Wu E. S., Hoechli L., Hoechli M., Jacobson K., Sowers A. E., Hackenbrock C. R. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci U S A. 1984 May;81(9):2606–2610. doi: 10.1073/pnas.81.9.2606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hackenbrock C. R., Chazotte B. Lipid enrichment and fusion of mitochondrial inner membranes. Methods Enzymol. 1986;125:35–45. doi: 10.1016/s0076-6879(86)25006-5. [DOI] [PubMed] [Google Scholar]
  13. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hackenbrock C. R., Miller K. J. The distribution of anionic sites on the surfaces of mitochondrial membranes. Visual probing with polycationic ferritin. J Cell Biol. 1975 Jun;65(3):615–630. doi: 10.1083/jcb.65.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966 Aug;30(2):269–297. doi: 10.1083/jcb.30.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heiple J. M., Taylor D. L. Intracellular pH in single motile cells. J Cell Biol. 1980 Sep;86(3):885–890. doi: 10.1083/jcb.86.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heiple J. M., Taylor D. L. pH changes in pinosomes and phagosomes in the ameba, Chaos carolinensis. J Cell Biol. 1982 Jul;94(1):143–149. doi: 10.1083/jcb.94.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoekstra D., Klappe K., de Boer T., Wilschut J. Characterization of the fusogenic properties of Sendai virus: kinetics of fusion with erythrocyte membranes. Biochemistry. 1985 Aug 27;24(18):4739–4745. doi: 10.1021/bi00339a005. [DOI] [PubMed] [Google Scholar]
  19. Hoekstra D., de Boer T., Klappe K., Wilschut J. Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry. 1984 Nov 20;23(24):5675–5681. doi: 10.1021/bi00319a002. [DOI] [PubMed] [Google Scholar]
  20. Loyter A., Citovsky V., Blumenthal R. The use of fluorescence dequenching measurements to follow viral membrane fusion events. Methods Biochem Anal. 1988;33:129–164. doi: 10.1002/9780470110546.ch4. [DOI] [PubMed] [Google Scholar]
  21. Matlib M. A., O'Brien P. J. Properties of rat liver mitochondria with intermembrane Cytochrome c. Arch Biochem Biophys. 1976 Mar;173(1):27–33. doi: 10.1016/0003-9861(76)90230-7. [DOI] [PubMed] [Google Scholar]
  22. Mauk M. R., Reid L. S., Mauk A. G. Spectrophotometric analysis of the interaction between cytochrome b5 and cytochrome c. Biochemistry. 1982 Apr 13;21(8):1843–1846. doi: 10.1021/bi00537a021. [DOI] [PubMed] [Google Scholar]
  23. Miller C., Racker E. Fusion of phospholipid vesicles reconstituted with cytochrome c oxidase and mitochondrial hydrophobic protein. J Membr Biol. 1976 May;26(4):319–333. doi: 10.1007/BF01868880. [DOI] [PubMed] [Google Scholar]
  24. Murphy R. F., Powers S., Cantor C. R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J Cell Biol. 1984 May;98(5):1757–1762. doi: 10.1083/jcb.98.5.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
  26. Nir S., Klappe K., Hoekstra D. Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: application of a mass action kinetic model. Biochemistry. 1986 Apr 22;25(8):2155–2161. doi: 10.1021/bi00356a046. [DOI] [PubMed] [Google Scholar]
  27. Pfaff E., Klingenberg M., Ritt E., Vogell W. Korrelation des unspezifisch permeablen mitochondrialen Raumes mit dem "Intermembran-Raum". Eur J Biochem. 1968 Jul;5(2):222–232. doi: 10.1111/j.1432-1033.1968.tb00361.x. [DOI] [PubMed] [Google Scholar]
  28. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):442–446. doi: 10.1073/pnas.77.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Liposome-mitochondrial inner membrane fusion. Lateral diffusion of integral electron transfer components. J Biol Chem. 1980 Apr 25;255(8):3748–3756. [PubMed] [Google Scholar]
  31. Schwerzmann K., Cruz-Orive L. M., Eggman R., Sänger A., Weibel E. R. Molecular architecture of the inner membrane of mitochondria from rat liver: a combined biochemical and stereological study. J Cell Biol. 1986 Jan;102(1):97–103. doi: 10.1083/jcb.102.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stell G., Joslin C. G. The donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys J. 1986 Nov;50(5):855–859. doi: 10.1016/S0006-3495(86)83526-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stonehuerner J., Williams J. B., Millett F. Interaction between cytochrome c and cytochrome b5. Biochemistry. 1979 Nov 27;18(24):5422–5427. doi: 10.1021/bi00591a026. [DOI] [PubMed] [Google Scholar]
  34. Stoner C. D., Sirak H. D. Osmotically-induced alterations in volume and ultrastructure of mitochondria isolated from rat liver and bovine heart. J Cell Biol. 1969 Dec;43(3):521–538. doi: 10.1083/jcb.43.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  36. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  37. Wilschut J., Hoekstra D. Membrane fusion: lipid vesicles as a model system. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):145–166. doi: 10.1016/0009-3084(86)90068-x. [DOI] [PubMed] [Google Scholar]
  38. Wojcieszyn J. W., Schlegel R. A., Lumley-Sapanski K., Jacobson K. A. Studies on the mechanism of polyethylene glycol-mediated cell fusion using fluorescent membrane and cytoplasmic probes. J Cell Biol. 1983 Jan;96(1):151–159. doi: 10.1083/jcb.96.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zavortink M., Welsh M. J., McIntosh J. R. The distribution of calmodulin in living mitotic cells. Exp Cell Res. 1983 Dec;149(2):375–385. doi: 10.1016/0014-4827(83)90350-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES