Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jul 1;114(1):1–7. doi: 10.1083/jcb.114.1.1

The submembrane machinery for nicotinic acetylcholine receptor clustering

PMCID: PMC2289056  PMID: 2050736

Full Text

The Full Text of this article is available as a PDF (910.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthony D. T., Jacobs-Cohen R. J., Marazzi G., Rubin L. L. A molecular defect in virally transformed muscle cells that cannot cluster acetylcholine receptors. J Cell Biol. 1988 May;106(5):1713–1721. doi: 10.1083/jcb.106.5.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anthony D. T., Schuetze S. M., Rubin L. L. Transformation by Rous sarcoma virus prevents acetylcholine receptor clustering on cultured chicken muscle fibers. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2265–2269. doi: 10.1073/pnas.81.7.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldwin T. J., Theriot J. A., Yoshihara C. M., Burden S. J. Regulation of transcript encoding the 43K subsynaptic protein during development and after denervation. Development. 1988 Dec;104(4):557–564. doi: 10.1242/dev.104.4.557. [DOI] [PubMed] [Google Scholar]
  4. Balice-Gordon R. J., Lichtman J. W. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. J Neurosci. 1990 Mar;10(3):894–908. doi: 10.1523/JNEUROSCI.10-03-00894.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barrantes F. J., Neugebauer D. C., Zingsheim H. P. Peptide extraction by alkaline treatment is accompanied by rearrangement of the membrane-bound acetylcholine receptor from Torpedo marmorata. FEBS Lett. 1980 Mar 24;112(1):73–78. doi: 10.1016/0014-5793(80)80131-1. [DOI] [PubMed] [Google Scholar]
  6. Bevan S., Steinbach J. H. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol. 1977 May;267(1):195–213. doi: 10.1113/jphysiol.1977.sp011808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bloch R. J. Actin at receptor-rich domains of isolated acetylcholine receptor clusters. J Cell Biol. 1986 Apr;102(4):1447–1458. doi: 10.1083/jcb.102.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bloch R. J., Froehner S. C. The relationship of the postsynaptic 43K protein to acetylcholine receptors in receptor clusters isolated from cultured rat myotubes. J Cell Biol. 1987 Mar;104(3):645–654. doi: 10.1083/jcb.104.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bloch R. J., Hall Z. W. Cytoskeletal components of the vertebrate neuromuscular junction: vinculin, alpha-actinin, and filamin. J Cell Biol. 1983 Jul;97(1):217–223. doi: 10.1083/jcb.97.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bloch R. J. Isolation of acetylcholine receptor clusters in substrate-associated material from cultured rat myotubes using saponin. J Cell Biol. 1984 Sep;99(3):984–993. doi: 10.1083/jcb.99.3.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bloch R. J., Morrow J. S. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989 Feb;108(2):481–493. doi: 10.1083/jcb.108.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bridgman P. C., Carr C., Pedersen S. E., Cohen J. B. Visualization of the cytoplasmic surface of Torpedo postsynaptic membranes by freeze-etch and immunoelectron microscopy. J Cell Biol. 1987 Oct;105(4):1829–1846. doi: 10.1083/jcb.105.4.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burden S. J., DePalma R. L., Gottesman G. S. Crosslinking of proteins in acetylcholine receptor-rich membranes: association between the beta-subunit and the 43 kd subsynaptic protein. Cell. 1983 Dec;35(3 Pt 2):687–692. doi: 10.1016/0092-8674(83)90101-0. [DOI] [PubMed] [Google Scholar]
  14. Burden S. J. The subsynaptic 43-kDa protein is concentrated at developing nerve-muscle synapses in vitro. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8270–8273. doi: 10.1073/pnas.82.23.8270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Carr C., Fischbach G. D., Cohen J. B. A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle. J Cell Biol. 1989 Oct;109(4 Pt 1):1753–1764. doi: 10.1083/jcb.109.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Carr C., McCourt D., Cohen J. B. The 43-kilodalton protein of Torpedo nicotinic postsynaptic membranes: purification and determination of primary structure. Biochemistry. 1987 Nov 3;26(22):7090–7102. doi: 10.1021/bi00396a034. [DOI] [PubMed] [Google Scholar]
  17. Carr C., Tyler A. N., Cohen J. B. Myristic acid is the NH2-terminal blocking group of the 43-kDa protein of Torpedo nicotinic post-synaptic membranes. FEBS Lett. 1989 Jan 16;243(1):65–69. doi: 10.1016/0014-5793(89)81219-0. [DOI] [PubMed] [Google Scholar]
  18. Cartaud A., Courvalin J. C., Ludosky M. A., Cartaud J. Presence of a protein immunologically related to lamin B in the postsynaptic membrane of Torpedo marmorata electrocyte. J Cell Biol. 1989 Oct;109(4 Pt 1):1745–1752. doi: 10.1083/jcb.109.4.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cartaud J., Sobel A., Rousselet A., Devaux P. F., Changeux J. P. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ. J Cell Biol. 1981 Aug;90(2):418–426. doi: 10.1083/jcb.90.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chang H. W., Bock E., Bonilla E. Dystrophin in electric organ of Torpedo californica homologous to that in human muscle. J Biol Chem. 1989 Dec 15;264(35):20831–20834. [PubMed] [Google Scholar]
  21. Daniels M. P., Krikorian J. G., Olek A. J., Bloch R. J. Association of cytoskeletal proteins with newly formed acetylcholine receptor aggregates induced by embryonic brain extract. Exp Cell Res. 1990 Jan;186(1):99–108. doi: 10.1016/0014-4827(90)90215-v. [DOI] [PubMed] [Google Scholar]
  22. Fertuck H. C., Salpeter M. M. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1376–1378. doi: 10.1073/pnas.71.4.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Flucher B. E., Daniels M. P. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron. 1989 Aug;3(2):163–175. doi: 10.1016/0896-6273(89)90029-9. [DOI] [PubMed] [Google Scholar]
  24. Fox G. Q., Richardson G. P. The developmental morphology of Torpedo marmorata: electric organ--myogenic phase. J Comp Neurol. 1978 Jun 1;179(3):677–697. doi: 10.1002/cne.901790313. [DOI] [PubMed] [Google Scholar]
  25. Frail D. E., McLaughlin L. L., Mudd J., Merlie J. P. Identification of the mouse muscle 43,000-dalton acetylcholine receptor-associated protein (RAPsyn) by cDNA cloning. J Biol Chem. 1988 Oct 25;263(30):15602–15607. [PubMed] [Google Scholar]
  26. Frail D. E., Mudd J., Shah V., Carr C., Cohen J. B., Merlie J. P. cDNAs for the postsynaptic 43-kDa protein of Torpedo electric organ encode two proteins with different carboxyl termini. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6302–6306. doi: 10.1073/pnas.84.17.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Freemont P. S., Hanson I. M., Trowsdale J. A novel cysteine-rich sequence motif. Cell. 1991 Feb 8;64(3):483–484. doi: 10.1016/0092-8674(91)90229-r. [DOI] [PubMed] [Google Scholar]
  28. Froehner S. C. Expression of RNA transcripts for the postsynaptic 43 kDa protein in innervated and denervated rat skeletal muscle. FEBS Lett. 1989 Jun 5;249(2):229–233. doi: 10.1016/0014-5793(89)80629-5. [DOI] [PubMed] [Google Scholar]
  29. Froehner S. C., Gulbrandsen V., Hyman C., Jeng A. Y., Neubig R. R., Cohen J. B. Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43,000 protein of Torpedo postsynaptic membranes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5230–5234. doi: 10.1073/pnas.78.8.5230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Froehner S. C., Luetje C. W., Scotland P. B., Patrick J. The postsynaptic 43K protein clusters muscle nicotinic acetylcholine receptors in Xenopus oocytes. Neuron. 1990 Oct;5(4):403–410. doi: 10.1016/0896-6273(90)90079-u. [DOI] [PubMed] [Google Scholar]
  31. Froehner S. C., Murnane A. A., Tobler M., Peng H. B., Sealock R. A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle. J Cell Biol. 1987 Jun;104(6):1633–1646. doi: 10.1083/jcb.104.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Froehner S. C. Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies. J Cell Biol. 1984 Jul;99(1 Pt 1):88–96. doi: 10.1083/jcb.99.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Gordon A. S., Milfay D. nu 1, a Mr 43,000 component of postsynaptic membranes, is a protein kinase. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4172–4174. doi: 10.1073/pnas.83.12.4172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hall Z. W., Lubit B. W., Schwartz J. H. Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J Cell Biol. 1981 Sep;90(3):789–792. doi: 10.1083/jcb.90.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hunter D. D., Shah V., Merlie J. P., Sanes J. R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature. 1989 Mar 16;338(6212):229–234. doi: 10.1038/338229a0. [DOI] [PubMed] [Google Scholar]
  36. Jasmin B. J., Cartaud A., Ludosky M. A., Changeux J. P., Cartaud J. Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane. Proc Natl Acad Sci U S A. 1990 May;87(10):3938–3941. doi: 10.1073/pnas.87.10.3938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Jasmin B. J., Changeux J. P., Cartaud J. Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature. 1990 Apr 12;344(6267):673–675. doi: 10.1038/344673a0. [DOI] [PubMed] [Google Scholar]
  38. Khurana T. S., Hoffman E. P., Kunkel L. M. Identification of a chromosome 6-encoded dystrophin-related protein. J Biol Chem. 1990 Oct 5;265(28):16717–16720. [PubMed] [Google Scholar]
  39. Knaack D., Shen I., Salpeter M. M., Podleski T. R. Selective effects of ascorbic acid on acetylcholine receptor number and distribution. J Cell Biol. 1986 Mar;102(3):795–802. doi: 10.1083/jcb.102.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kordeli E., Cartaud J., Nghiêm H. O., Devillers-Thiéry A., Changeux J. P. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte. J Cell Biol. 1989 Jan;108(1):127–139. doi: 10.1083/jcb.108.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kramarcy N. R., Sealock R. Dystrophin as a focal adhesion protein. Collocalization with talin and the Mr 48,000 sarcolemmal protein in cultured Xenopus muscle. FEBS Lett. 1990 Nov 12;274(1-2):171–174. doi: 10.1016/0014-5793(90)81356-s. [DOI] [PubMed] [Google Scholar]
  42. LaRochelle W. J., Froehner S. C. Comparison of the postsynaptic 43-kDa protein from muscle cells that differ in acetylcholine receptor clustering activity. J Biol Chem. 1987 Jun 15;262(17):8190–8195. [PubMed] [Google Scholar]
  43. LaRochelle W. J., Froehner S. C. Determination of the tissue distributions and relative concentrations of the postsynaptic 43-kDa protein and the acetylcholine receptor in Torpedo. J Biol Chem. 1986 Apr 25;261(12):5270–5274. [PubMed] [Google Scholar]
  44. LaRochelle W. J., Witzemann V., Fiedler W., Froehner S. C. Developmental expression of the 43K and 58K postsynaptic membrane proteins and nicotinic acetylcholine receptors in Torpedo electrocytes. J Neurosci. 1990 Oct;10(10):3460–3467. doi: 10.1523/JNEUROSCI.10-10-03460.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Lo M. M., Garland P. B., Lamprecht J., Barnard E. A. Rotational mobility of the membrane-bound acetylcholine receptor of Torpedo electric organ measured by phosphorescence depolarisation. FEBS Lett. 1980 Mar 10;111(2):407–412. doi: 10.1016/0014-5793(80)80838-6. [DOI] [PubMed] [Google Scholar]
  46. Love D. R., Hill D. F., Dickson G., Spurr N. K., Byth B. C., Marsden R. F., Walsh F. S., Edwards Y. H., Davies K. E. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature. 1989 May 4;339(6219):55–58. doi: 10.1038/339055a0. [DOI] [PubMed] [Google Scholar]
  47. Marazzi G., Bard F., Klymkowsky M. W., Rubin L. L. Microinjection of a monoclonal antibody against a 37-kD protein (tropomyosin 2) prevents the formation of new acetylcholine receptor clusters. J Cell Biol. 1989 Nov;109(5):2337–2344. doi: 10.1083/jcb.109.5.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Mitra A. K., McCarthy M. P., Stroud R. M. Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43-kD cytoskeletal protein, determined at 22 A by low dose electron microscopy and x-ray diffraction to 12.5 A. J Cell Biol. 1989 Aug;109(2):755–774. doi: 10.1083/jcb.109.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Musil L. S., Carr C., Cohen J. B., Merlie J. P. Acetylcholine receptor-associated 43K protein contains covalently bound myristate. J Cell Biol. 1988 Sep;107(3):1113–1121. doi: 10.1083/jcb.107.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nitkin R. M., Smith M. A., Magill C., Fallon J. R., Yao Y. M., Wallace B. G., McMahan U. J. Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol. 1987 Dec;105(6 Pt 1):2471–2478. doi: 10.1083/jcb.105.6.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Peng H. B., Baker L. P., Chen Q. Induction of synaptic development in cultured muscle cells by basic fibroblast growth factor. Neuron. 1991 Feb;6(2):237–246. doi: 10.1016/0896-6273(91)90359-8. [DOI] [PubMed] [Google Scholar]
  53. Peng H. B., Cheng P. C. Formation of postsynaptic specializations induced by latex beads in cultured muscle cells. J Neurosci. 1982 Dec;2(12):1760–1774. doi: 10.1523/JNEUROSCI.02-12-01760.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Peng H. B., Froehner S. C. Association of the postsynaptic 43K protein with newly formed acetylcholine receptor clusters in cultured muscle cells. J Cell Biol. 1985 May;100(5):1698–1705. doi: 10.1083/jcb.100.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Phillips W. D., Kopta C., Blount P., Gardner P. D., Steinbach J. H., Merlie J. P. ACh receptor-rich membrane domains organized in fibroblasts by recombinant 43-kildalton protein. Science. 1991 Feb 1;251(4993):568–570. doi: 10.1126/science.1703661. [DOI] [PubMed] [Google Scholar]
  56. Porter S., Froehner S. C. Interaction of the 43K protein with components of Torpedo postsynaptic membranes. Biochemistry. 1985 Jan 15;24(2):425–432. doi: 10.1021/bi00323a028. [DOI] [PubMed] [Google Scholar]
  57. Redfern P. A. Neuromuscular transmission in new-born rats. J Physiol. 1970 Aug;209(3):701–709. doi: 10.1113/jphysiol.1970.sp009187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Rich M. M., Lichtman J. W. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. J Neurosci. 1989 May;9(5):1781–1805. doi: 10.1523/JNEUROSCI.09-05-01781.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Robitaille R., Adler E. M., Charlton M. P. Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron. 1990 Dec;5(6):773–779. doi: 10.1016/0896-6273(90)90336-e. [DOI] [PubMed] [Google Scholar]
  60. Rochlin M. W., Chen Q. M., Tobler M., Turner C. E., Burridge K., Peng H. B. The relationship between talin and acetylcholine receptor clusters in Xenopus muscle cells. J Cell Sci. 1989 Mar;92(Pt 3):461–472. doi: 10.1242/jcs.92.3.461. [DOI] [PubMed] [Google Scholar]
  61. Rousselet A., Cartaud J., Devaux P. F., Changeux J. P. The rotational diffusion of the acetylcholine receptor in Torpeda marmorata membrane fragments studied with a spin-labelled alpha-toxin: importance of the 43 000 protein(s). EMBO J. 1982;1(4):439–445. doi: 10.1002/j.1460-2075.1982.tb01188.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Sakakibara H., Engel A. G., Lambert E. H. Duchenne dystrophy: ultrastructural localization of the acetylcholine receptor and intracellular microelectrode studies of neuromuscular transmission. Neurology. 1977 Aug;27(8):741–745. doi: 10.1212/wnl.27.8.741. [DOI] [PubMed] [Google Scholar]
  63. Sealock R., Butler M. H., Kramarcy N. R., Gao K. X., Murnane A. A., Douville K., Froehner S. C. Localization of dystrophin relative to acetylcholine receptor domains in electric tissue and adult and cultured skeletal muscle. J Cell Biol. 1991 Jun;113(5):1133–1144. doi: 10.1083/jcb.113.5.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Sealock R., Murnane A. A., Paulin D., Froehner S. C. Immunochemical identification of desmin in Torpedo postsynaptic membranes and at the rat neuromuscular junction. Synapse. 1989;3(4):315–324. doi: 10.1002/syn.890030404. [DOI] [PubMed] [Google Scholar]
  65. Sealock R., Paschal B., Beckerle M., Burridge K. Talin is a post-synaptic component of the rat neuromuscular junction. Exp Cell Res. 1986 Mar;163(1):143–150. doi: 10.1016/0014-4827(86)90566-5. [DOI] [PubMed] [Google Scholar]
  66. Sealock R., Wray B. E., Froehner S. C. Ultrastructural localization of the Mr 43,000 protein and the acetylcholine receptor in Torpedo postsynaptic membranes using monoclonal antibodies. J Cell Biol. 1984 Jun;98(6):2239–2244. doi: 10.1083/jcb.98.6.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Sobel A., Weber M., Changeux J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur J Biochem. 1977 Oct 17;80(1):215–224. doi: 10.1111/j.1432-1033.1977.tb11874.x. [DOI] [PubMed] [Google Scholar]
  68. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  69. Toyoshima C., Unwin N. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature. 1988 Nov 17;336(6196):247–250. doi: 10.1038/336247a0. [DOI] [PubMed] [Google Scholar]
  70. Tsui H. C., Cohen J. B., Fischbach G. D. Variation in the ratio of acetylcholine receptors and the Mr 43,000 receptor-associated protein in embryonic chick myotubes and myoblasts. Dev Biol. 1990 Aug;140(2):437–446. doi: 10.1016/0012-1606(90)90092-w. [DOI] [PubMed] [Google Scholar]
  71. Turner C. E., Kramarcy N., Sealock R., Burridge K. Localization of paxillin, a focal adhesion protein, to smooth muscle dense plaques, and the myotendinous and neuromuscular junctions of skeletal muscle. Exp Cell Res. 1991 Feb;192(2):651–655. doi: 10.1016/0014-4827(91)90090-h. [DOI] [PubMed] [Google Scholar]
  72. Usdin T. B., Fischbach G. D. Purification and characterization of a polypeptide from chick brain that promotes the accumulation of acetylcholine receptors in chick myotubes. J Cell Biol. 1986 Aug;103(2):493–507. doi: 10.1083/jcb.103.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Walker J. H., Boustead C. M., Witzemann V. The 43-K protein, v1, associated with acetylcholine receptor containing membrane fragments is an actin-binding protein. EMBO J. 1984 Oct;3(10):2287–2290. doi: 10.1002/j.1460-2075.1984.tb02127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES