Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Jul 2;114(2):231–239. doi: 10.1083/jcb.114.2.231

Sorting of sphingolipids in the endocytic pathway of HT29 cells

PMCID: PMC2289073  PMID: 2071671

Abstract

The intracellular flow and fate of two fluorescently labeled sphingolipids, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]hexanoyl glucosyl sphingosine (C6-NBD-glucosylceramide) and C6-NBD- sphingomyelin, was examined in the human colon adenocarcinoma cell line HT29. After their insertion into the plasma membrane at low temperature and subsequent warming of the cells to 37 degrees C, both sphingolipid analogues were internalized by endocytosis, but their intracellular site of destination differed. After 30 min of internalization, C6-NBD- glucosylceramide was localized in the Golgi apparatus, as demonstrated by colocalization with fluorescently labeled ceramide, a Golgi complex marker, and by showing that monensin-induced disruption of the Golgi structure was paralleled by a similar perturbation of the fluorescence distribution. By contrast, C6-NBD-sphingomyelin does not colocalize with the tagged ceramide. Rather, a colocalization with ricin, which is internalized by endocytosis and predominantly reaches the lysosomes, was observed, indicating that the site of delivery of this lipid is restricted to endosomal/lysosomal compartments. Also, in monensin- treated cells no change in the distribution of fluorescence was observed. Thus, these results demonstrate that (sphingo)lipid sorting can occur in the endocytic pathway. Interestingly, the observed sorting phenomenon was specific for glucosylceramide, when compared to other glycolipids, while only undifferentiated HT29 cells displayed the different routing of the two lipids. In differentiated HT29 cells the internalization pathway of sphingomyelin and glucosylceramide was indistinguishable from that of transferrin.

Full Text

The Full Text of this article is available as a PDF (986.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Anderson R. G., Goldstein J. L. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 1983 Mar;32(3):663–667. doi: 10.1016/0092-8674(83)90052-1. [DOI] [PubMed] [Google Scholar]
  2. Cosson P., de Curtis I., Pouysségur J., Griffiths G., Davoust J. Low cytoplasmic pH inhibits endocytosis and transport from the trans-Golgi network to the cell surface. J Cell Biol. 1989 Feb;108(2):377–387. doi: 10.1083/jcb.108.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goda S., Kobayashi T., Goto I. Hydrolysis of galactosylsphingosine and lactosylsphingosine by beta-galactosidases in human brain and cultured fibroblasts. Biochim Biophys Acta. 1987 Aug 15;920(3):259–265. doi: 10.1016/0005-2760(87)90103-2. [DOI] [PubMed] [Google Scholar]
  4. Kishimoto Y. A facile synthesis of ceramides. Chem Phys Lipids. 1975 Sep;15(1):33–36. doi: 10.1016/0009-3084(75)90029-8. [DOI] [PubMed] [Google Scholar]
  5. Kok J. W., Eskelinen S., Hoekstra K., Hoekstra D. Salvage of glucosylceramide by recycling after internalization along the pathway of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9896–9900. doi: 10.1073/pnas.86.24.9896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Koval M., Pagano R. E. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J Cell Biol. 1989 Jun;108(6):2169–2181. doi: 10.1083/jcb.108.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lipsky N. G., Pagano R. E. A vital stain for the Golgi apparatus. Science. 1985 May 10;228(4700):745–747. doi: 10.1126/science.2581316. [DOI] [PubMed] [Google Scholar]
  8. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schwarzmann G., Sandhoff K. Metabolism and intracellular transport of glycosphingolipids. Biochemistry. 1990 Dec 11;29(49):10865–10871. doi: 10.1021/bi00501a001. [DOI] [PubMed] [Google Scholar]
  10. Sleight R. G., Pagano R. E. Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus. J Cell Biol. 1984 Aug;99(2):742–751. doi: 10.1083/jcb.99.2.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983 Jan;96(1):1–27. doi: 10.1083/jcb.96.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stoorvogel W., Geuze H. J., Griffith J. M., Strous G. J. The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum. J Cell Biol. 1988 Jun;106(6):1821–1829. doi: 10.1083/jcb.106.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES