Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Apr;34(4):870–876. doi: 10.1128/jcm.34.4.870-876.1996

Application of random amplified polymorphic DNA analysis to differentiate strains of Salmonella enteritidis.

A W Lin 1, M A Usera 1, T J Barrett 1, R A Goldsby 1
PMCID: PMC228908  PMID: 8815099

Abstract

A random amplified polymorphic DNA (RAPD) fingerprinting method has been developed to differentiate Salmonella enteritidis isolates. A total of 65 arbitrary primers were screened with S. enteritidis isolates of different phage types. This allowed selection of a panel of primers capable of detecting DNA polymorphisms among S. enteritidis isolates. This panel was used to examine a panel of 29 isolates of S. enteritidis which had been previously characterized by other subtyping methods, including phage typing (PT) (n = 7), ribotyping (RT) (n = 13), and pulsed-field gel electrophoresis (PFGE). Applied collectively, these three methods resolved the collection into 20 different subtypes. However, by the RAPD fingerprinting method alone, 14 RAPD subtypes were revealed. Eight isolates of S. enteritidis phage type 8 that failed to be discriminated by other typing methods (PT, RT, and PFGE) were resolved into three different subtypes by RAPD analysis. In contrast, isolates that were derived from the same sources were not differentiated by any of the subtyping methods employed, including PT, RT, PFGE, and RAPD analysis. This RAPD approach to S. enteritidis subtyping provided more discriminatory power than did any of several other subtyping methods applied individually. Once the challenging step of primer identification was accomplished, determinations of the appropriate concentrations of arbitrary primer, DNA template, and MG2+ ion were also necessary for optimal discriminatory power. The bacterial DNA used in this RAPD protocol was obtained by boiling the bacterial sample. This simple procedure yielded DNA that produced fingerprint patterns as consistent as those obtained from phenol-chloroform-extracted DNA. Clearly, when appropriately constituted primer sets are identified and employed, RAPD analysis provides a simple, rapid, and powerful subtyping method for S. enteritidis.

Full Text

The Full Text of this article is available as a PDF (509.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akopyanz N., Bukanov N. O., Westblom T. U., Kresovich S., Berg D. E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 1992 Oct 11;20(19):5137–5142. doi: 10.1093/nar/20.19.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altekruse S., Koehler J., Hickman-Brenner F., Tauxe R. V., Ferris K. A comparison of Salmonella enteritidis phage types from egg-associated outbreaks and implicated laying flocks. Epidemiol Infect. 1993 Feb;110(1):17–22. doi: 10.1017/s0950268800050639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker R. M., Old D. C. The usefulness of biotyping in studying the epidemiology and phylogeny of salmonellae. J Med Microbiol. 1989 Jun;29(2):81–88. doi: 10.1099/00222615-29-2-81. [DOI] [PubMed] [Google Scholar]
  4. Barrett T. J., Lior H., Green J. H., Khakhria R., Wells J. G., Bell B. P., Greene K. D., Lewis J., Griffin P. M. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing. J Clin Microbiol. 1994 Dec;32(12):3013–3017. doi: 10.1128/jcm.32.12.3013-3017.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorn C. R., Silapanuntakul R., Angrick E. J., Shipman L. D. Plasmid analysis and epidemiology of Salmonella enteritidis infection in three commercial layer flocks. Avian Dis. 1992 Oct-Dec;36(4):844–851. [PubMed] [Google Scholar]
  6. Dorn C. R., Silapanuntakul R., Angrick E. J., Shipman L. D. Plasmid analysis of Salmonella enteritidis isolated from human gastroenteritis cases and from epidemiologically associated poultry flocks. Epidemiol Infect. 1993 Oct;111(2):239–243. doi: 10.1017/s0950268800056946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellsworth D. L., Rittenhouse K. D., Honeycutt R. L. Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques. 1993 Feb;14(2):214–217. [PubMed] [Google Scholar]
  8. Hickman-Brenner F. W., Stubbs A. D., Farmer J. J., 3rd Phage typing of Salmonella enteritidis in the United States. J Clin Microbiol. 1991 Dec;29(12):2817–2823. doi: 10.1128/jcm.29.12.2817-2823.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Katouli M., Seuffer R. H., Wollin R., Kühn I., Möllby R. Variations in biochemical phenotypes and phage types of Salmonella enteritidis in Germany 1980-92. Epidemiol Infect. 1993 Oct;111(2):199–207. doi: 10.1017/s0950268800056909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Makino S., Okada Y., Maruyama T., Kaneko S., Sasakawa C. PCR-based random amplified polymorphic DNA fingerprinting of Yersinia pseudotuberculosis and its practical applications. J Clin Microbiol. 1994 Jan;32(1):65–69. doi: 10.1128/jcm.32.1.65-69.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maslow J. N., Mulligan M. E., Arbeit R. D. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis. 1993 Aug;17(2):153–164. doi: 10.1093/clinids/17.2.153. [DOI] [PubMed] [Google Scholar]
  12. Mazurier S. I., Wernars K. Typing of Listeria strains by random amplification of polymorphic DNA. Res Microbiol. 1992 Jun;143(5):499–505. doi: 10.1016/0923-2508(92)90096-7. [DOI] [PubMed] [Google Scholar]
  13. Meunier J. R., Grimont P. A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol. 1993 Jun;144(5):373–379. doi: 10.1016/0923-2508(93)90194-7. [DOI] [PubMed] [Google Scholar]
  14. Murphy N. B., Pellé R. The use of arbitrary primers and the RADES method for the rapid identification of developmentally regulated genes in trypanosomes. Gene. 1994 Apr 8;141(1):53–61. doi: 10.1016/0378-1119(94)90127-9. [DOI] [PubMed] [Google Scholar]
  15. Olsen J. E., Skov M. N., Threlfall E. J., Brown D. J. Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. J Med Microbiol. 1994 Jan;40(1):15–22. doi: 10.1099/00222615-40-1-15. [DOI] [PubMed] [Google Scholar]
  16. Powell N. G., Threlfall E. J., Chart H., Rowe B. Subdivision of Salmonella enteritidis PT 4 by pulsed-field gel electrophoresis: potential for epidemiological surveillance. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):193–198. doi: 10.1111/j.1574-6968.1994.tb06888.x. [DOI] [PubMed] [Google Scholar]
  17. Rafalski J. A., Tingey S. V. Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 1993 Aug;9(8):275–280. doi: 10.1016/0168-9525(93)90013-8. [DOI] [PubMed] [Google Scholar]
  18. Rampling A. Salmonella enteritidis five years on. Lancet. 1993 Aug 7;342(8867):317–318. doi: 10.1016/0140-6736(93)91466-y. [DOI] [PubMed] [Google Scholar]
  19. Roberts J. A., Sockett P. N. The socio-economic impact of human Salmonella enteritidis infection. Int J Food Microbiol. 1994 Jan;21(1-2):117–129. doi: 10.1016/0168-1605(94)90205-4. [DOI] [PubMed] [Google Scholar]
  20. Rodrigue D. C., Cameron D. N., Puhr N. D., Brenner F. W., St Louis M. E., Wachsmuth I. K., Tauxe R. V. Comparison of plasmid profiles, phage types, and antimicrobial resistance patterns of Salmonella enteritidis isolates in the United States. J Clin Microbiol. 1992 Apr;30(4):854–857. doi: 10.1128/jcm.30.4.854-857.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rodrigue D. C., Tauxe R. V., Rowe B. International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect. 1990 Aug;105(1):21–27. doi: 10.1017/s0950268800047609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rothuizen J., Van Wolferen M. Randomly amplified DNA polymorphisms in dogs are reproducible and display Mendelian transmission. Anim Genet. 1994 Feb;25(1):13–18. [PubMed] [Google Scholar]
  23. Salmon R. L., Palmer S. R., Ribeiro C. D., Hutchings P., Coleman T. J., Willis F. J., Allsup T. N., Ritchie W. N. How is the source of food poisoning outbreaks established? The example of three consecutive Salmonella enteritidis PT4 outbreaks linked to eggs. J Epidemiol Community Health. 1991 Dec;45(4):266–269. doi: 10.1136/jech.45.4.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Selander R. K., Smith N. H., Li J., Beltran P., Ferris K. E., Kopecko D. J., Rubin F. A. Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin. J Bacteriol. 1992 Jun;174(11):3587–3592. doi: 10.1128/jb.174.11.3587-3592.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stubbs A. D., Hickman-Brenner F. W., Cameron D. N., Farmer J. J., 3rd Differentiation of Salmonella enteritidis phage type 8 strains: evaluation of three additional phage typing systems, plasmid profiles, antibiotic susceptibility patterns, and biotyping. J Clin Microbiol. 1994 Jan;32(1):199–201. doi: 10.1128/jcm.32.1.199-201.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Usera M. A., Popovic T., Bopp C. A., Strockbine N. A. Molecular subtyping of Salmonella enteritidis phage type 8 strains from the United States. J Clin Microbiol. 1994 Jan;32(1):194–198. doi: 10.1128/jcm.32.1.194-198.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ward L. R., de Sa J. D., Rowe B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect. 1987 Oct;99(2):291–294. doi: 10.1017/s0950268800067765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wolff K., Peters-van Rijn J. Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers. Heredity (Edinb) 1993 Oct;71(Pt 4):335–341. doi: 10.1038/hdy.1993.147. [DOI] [PubMed] [Google Scholar]
  31. Woods J. P., Kersulyte D., Tolan R. W., Jr, Berg C. M., Berg D. E. Use of arbitrarily primed polymerase chain reaction analysis to type disease and carrier strains of Neisseria meningitidis isolated during a university outbreak. J Infect Dis. 1994 Jun;169(6):1384–1389. doi: 10.1093/infdis/169.6.1384. [DOI] [PubMed] [Google Scholar]
  32. del Tufo J. P., Tingey S. V. RAPD assay. A novel technique for genetic diagnostics. Methods Mol Biol. 1994;28:237–241. doi: 10.1385/0-89603-254-x:237. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES