Abstract
Basal keratinocytes attach to the underlying dermal stroma through an ultrastructurally unique and complex basement membrane zone. Electron- dense plaques along the basal surface plasma membrane, termed hemidesmosomes, appear to attach directly to the lamina densa of the basement membrane through fine strands, called anchoring filaments. The lamina densa is secured to the stroma through a complex of type VII collagen containing anchoring fibrils and anchoring plaques. We have identified what we believe is a novel antigen unique to this tissue region. The mAbs to this antigen localize to the anchoring filaments, just below the basal-dense plate of the hemidesmosomes. In cell culture, the antigen is deposited upon the culture substate by growing and migrating human keratinocytes. Addition of mAb to the cultures causes the cells to round and detach, but does not impair them metabolically. Skin fragments incubated with antibody extensively de- epithelialize. These findings strongly suggest that this antigen is intimately involved in attachment of keratinocytes to the basement membrane. This antigen was isolated from keratinocyte cultures by immunoaffinity chromatography. Two molecules are observed. The most intact species contains three nonidentical chains, 165, 155, and 140 kD linked by interchain disulfide bonds. The second and more abundant species contains the 165- and 140-kD chains, but the 155-kD chain has been proteolytically cleaved to 105 kD. Likewise, two rotary-shadowed images are observed. The larger of the two, presumably corresponding to the most intact form, appears as an asymmetric 107-nm-long rod, with a single globule at one end and two smaller globules at the other. The more abundant species, presumably the proteolytically cleaved form, lacks the distal small globule. We propose the name "kalinin" for this new molecule.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aumailley M., Mann K., von der Mark H., Timpl R. Cell attachment properties of collagen type VI and Arg-Gly-Asp dependent binding to its alpha 2(VI) and alpha 3(VI) chains. Exp Cell Res. 1989 Apr;181(2):463–474. doi: 10.1016/0014-4827(89)90103-1. [DOI] [PubMed] [Google Scholar]
- Barrandon Y., Green H. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell. 1987 Sep 25;50(7):1131–1137. doi: 10.1016/0092-8674(87)90179-6. [DOI] [PubMed] [Google Scholar]
- Briggaman R. A., Wheeler C. E., Jr Epidermolysis bullosa dystrophica-recessive: a possible role of anchoring fibrils in the pathogenesis. J Invest Dermatol. 1975 Aug;65(2):203–211. doi: 10.1111/1523-1747.ep12598208. [DOI] [PubMed] [Google Scholar]
- Briggaman R. A., Wheeler C. E., Jr The epidermal-dermal junction. J Invest Dermatol. 1975 Jul;65(1):71–84. doi: 10.1111/1523-1747.ep12598050. [DOI] [PubMed] [Google Scholar]
- Bruckner-Tuderman L., Mitsuhashi Y., Schnyder U. W., Bruckner P. Anchoring fibrils and type VII collagen are absent from skin in severe recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1989 Jul;93(1):3–9. doi: 10.1111/1523-1747.ep12277331. [DOI] [PubMed] [Google Scholar]
- Bruns R. R. A symmetrical, extracellular fibril. J Cell Biol. 1969 Aug;42(2):418–430. doi: 10.1083/jcb.42.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bächinger H. P., Morris N. P., Lunstrum G. P., Keene D. R., Rosenbaum L. M., Compton L. A., Burgeson R. E. The relationship of the biophysical and biochemical characteristics of type VII collagen to the function of anchoring fibrils. J Biol Chem. 1990 Jun 15;265(17):10095–10101. [PubMed] [Google Scholar]
- Compton C. C., Gill J. M., Bradford D. A., Regauer S., Gallico G. G., O'Connor N. E. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest. 1989 May;60(5):600–612. [PubMed] [Google Scholar]
- Eady R. A. Babes, blisters and basement membranes: from sticky molecules to epidermolysis bullosa. Clin Exp Dermatol. 1987 May;12(3):161–170. doi: 10.1111/j.1365-2230.1987.tb01886.x. [DOI] [PubMed] [Google Scholar]
- Ellison J., Garrod D. R. Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of hemidesmosomes to the dermis. J Cell Sci. 1984 Dec;72:163–172. doi: 10.1242/jcs.72.1.163. [DOI] [PubMed] [Google Scholar]
- Engvall E., Davis G. E., Dickerson K., Ruoslahti E., Varon S., Manthorpe M. Mapping of domains in human laminin using monoclonal antibodies: localization of the neurite-promoting site. J Cell Biol. 1986 Dec;103(6 Pt 1):2457–2465. doi: 10.1083/jcb.103.6.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engvall E., Earwicker D., Haaparanta T., Ruoslahti E., Sanes J. R. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul. 1990 Sep;1(10):731–740. doi: 10.1091/mbc.1.10.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engvall E., Hessle H., Klier G. Molecular assembly, secretion, and matrix deposition of type VI collagen. J Cell Biol. 1986 Mar;102(3):703–710. doi: 10.1083/jcb.102.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fine J. D. Antigenic features and structural correlates of basement membranes. Relationship to epidermolysis bullosa. Arch Dermatol. 1988 May;124(5):713–717. [PubMed] [Google Scholar]
- Gipson I. K., Grill S. M., Spurr S. J., Brennan S. J. Hemidesmosome formation in vitro. J Cell Biol. 1983 Sep;97(3):849–857. doi: 10.1083/jcb.97.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gipson I. K., Spurr-Michaud S. J., Tisdale A. S. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):212–220. [PubMed] [Google Scholar]
- Gipson I. K., Spurr-Michaud S. J., Tisdale A. S. Hemidesmosomes and anchoring fibril collagen appear synchronously during development and wound healing. Dev Biol. 1988 Apr;126(2):253–262. doi: 10.1016/0012-1606(88)90136-4. [DOI] [PubMed] [Google Scholar]
- Goldberg M., Escaig-Haye F. Is the lamina lucida of the basement membrane a fixation artefact? Eur J Cell Biol. 1986 Dec;42(2):365–368. [PubMed] [Google Scholar]
- Jones J. C., Yokoo K. M., Goldman R. D. Is the hemidesmosome a half desmosome? An immunological comparison of mammalian desmosomes and hemidesmosomes. Cell Motil Cytoskeleton. 1986;6(6):560–569. doi: 10.1002/cm.970060604. [DOI] [PubMed] [Google Scholar]
- Kawanami O., Ferrans V. J., Roberts W. C., Crystal R. G., Fulmer J. D. Anchoring fibrils. A new connective tissue structure in fibrotic lung disease. Am J Pathol. 1978 Aug;92(2):389–410. [PMC free article] [PubMed] [Google Scholar]
- Keene D. R., Engvall E., Glanville R. W. Ultrastructure of type VI collagen in human skin and cartilage suggests an anchoring function for this filamentous network. J Cell Biol. 1988 Nov;107(5):1995–2006. doi: 10.1083/jcb.107.5.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keene D. R., Lunstrum G. P., Morris N. P., Stoddard D. W., Burgeson R. E. Two type XII-like collagens localize to the surface of banded collagen fibrils. J Cell Biol. 1991 May;113(4):971–978. doi: 10.1083/jcb.113.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keene D. R., Sakai L. Y., Lunstrum G. P., Morris N. P., Burgeson R. E. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol. 1987 Mar;104(3):611–621. doi: 10.1083/jcb.104.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly D. E. Fine structure of desmosomes. , hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966 Jan;28(1):51–72. doi: 10.1083/jcb.28.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labib R. S., Anhalt G. J., Patel H. P., Mutasim D. F., Diaz L. A. Molecular heterogeneity of the bullous pemphigoid antigens as detected by immunoblotting. J Immunol. 1986 Feb 15;136(4):1231–1235. [PubMed] [Google Scholar]
- Leigh I. M., Eady R. A., Heagerty A. H., Purkis P. E., Whitehead P. A., Burgeson R. E. Type VII collagen is a normal component of epidermal basement membrane, which shows altered expression in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 1988 May;90(5):639–642. doi: 10.1111/1523-1747.ep12560795. [DOI] [PubMed] [Google Scholar]
- Lunstrum G. P., Kuo H. J., Rosenbaum L. M., Keene D. R., Glanville R. W., Sakai L. Y., Burgeson R. E. Anchoring fibrils contain the carboxyl-terminal globular domain of type VII procollagen, but lack the amino-terminal globular domain. J Biol Chem. 1987 Oct 5;262(28):13706–13712. [PubMed] [Google Scholar]
- Lunstrum G. P., Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986 Jul 5;261(19):9042–9048. [PubMed] [Google Scholar]
- Morris N. P., Keene D. R., Glanville R. W., Bentz H., Burgeson R. E. The tissue form of type VII collagen is an antiparallel dimer. J Biol Chem. 1986 Apr 25;261(12):5638–5644. [PubMed] [Google Scholar]
- Mueller S., Klaus-Kovtun V., Stanley J. R. A 230-kD basic protein is the major bullous pemphigoid antigen. J Invest Dermatol. 1989 Jan;92(1):33–38. doi: 10.1111/1523-1747.ep13070476. [DOI] [PubMed] [Google Scholar]
- Mutasim D. F., Morrison L. H., Takahashi Y., Labib R. S., Skouge J., Diaz L. A., Anhalt G. J. Definition of bullous pemphigoid antibody binding to intracellular and extracellular antigen associated with hemidesmosomes. J Invest Dermatol. 1989 Feb;92(2):225–230. doi: 10.1111/1523-1747.ep12276753. [DOI] [PubMed] [Google Scholar]
- Palade G. E., Farquhar M. G. A special fibril of the dermis. J Cell Biol. 1965 Oct;27(1):215–224. doi: 10.1083/jcb.27.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regnier M., Vaigot P., Michel S., Prunieras M. Localization of bullous pemphigoid antigen (BPA) in isolated human keratinocytes. J Invest Dermatol. 1985 Sep;85(3):187–190. doi: 10.1111/1523-1747.ep12276656. [DOI] [PubMed] [Google Scholar]
- Rowlatt C. Subepithelial fibrils associated with the basal lamina under simple epithelia in mouse uterus: possible tropocollagen aggregates. J Ultrastruct Res. 1969 Jan;26(1):44–51. doi: 10.1016/s0022-5320(69)90034-3. [DOI] [PubMed] [Google Scholar]
- Sakai L. Y., Engvall E., Hollister D. W., Burgeson R. E. Production and characterization of a monoclonal antibody to human Type IV collagen. Am J Pathol. 1982 Sep;108(3):310–318. [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith L. T., Sakai L. Y., Burgeson R. E., Holbrook K. A. Ontogeny of structural components at the dermal-epidermal junction in human embryonic and fetal skin: the appearance of anchoring fibrils and type VII collagen. J Invest Dermatol. 1988 Apr;90(4):480–485. doi: 10.1111/1523-1747.ep12460951. [DOI] [PubMed] [Google Scholar]
- Stanley J. R., Woodley D. T., Katz S. I. Identification and partial characterization of pemphigoid antigen extracted from normal human skin. J Invest Dermatol. 1984 Jan;82(1):108–111. doi: 10.1111/1523-1747.ep12259224. [DOI] [PubMed] [Google Scholar]
- Stepp M. A., Spurr-Michaud S., Tisdale A., Elwell J., Gipson I. K. Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8970–8974. doi: 10.1073/pnas.87.22.8970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Susi F. R., Belt W. D., Kelly J. W. Fine structure of fibrillar complexes associated with the basement membrane in human oral mucosa. J Cell Biol. 1967 Aug;34(2):686–690. doi: 10.1083/jcb.34.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISS P., FERRIS W. Electronmicrograms of larval amphibian epidermis. Exp Cell Res. 1954 May;6(2):546–549. doi: 10.1016/0014-4827(54)90210-4. [DOI] [PubMed] [Google Scholar]
- Wewer U., Albrechtsen R., Manthorpe M., Varon S., Engvall E., Ruoslahti E. Human laminin isolated in a nearly intact, biologically active form from placenta by limited proteolysis. J Biol Chem. 1983 Oct 25;258(20):12654–12660. [PubMed] [Google Scholar]