Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Sep 2;114(6):1179–1190. doi: 10.1083/jcb.114.6.1179

Biophysical properties and microfilament assembly in neutrophils: modulation by cyclic AMP

PMCID: PMC2289125  PMID: 1716633

Abstract

The microfilament lattice, composed primarily of filamentous (F)-actin, determines in large part the mechanical (deformability) properties of neutrophils, and thus may regulate the ability of neutrophils to transit a microvascular bed. Circulating factors may stimulate the neutrophil to become rigid and therefore be retained in the capillaries. We hypothesized that cell stiffening might be attenuated by an increase in intracellular cAMP. A combination of cell filtration and cell poking (mechanical indentation) was used to measure cell deformability. Neutrophils pretreated with dibutyryl cAMP (db-cAMP) or the combination of prostaglandin E2 (PGE2, a stimulator of adenylate cyclase) and isobutylmethylxanthine (IBMX, an inhibitor of phosphodiesterase) demonstrated significant inhibition of the n-formyl- methionyl-leucyl-phenylalanine (fMLP)-inducing stiffening. The inhibition of cell stiffening was associated with an increase in intracellular cAMP as measured by enzyme-linked immunoassay (EIA) and an increase in the activity of the cAMP-dependent kinase (A-kinase). Treatment with PGE2 and IBMX also resulted in a decrease in the F-actin content of stimulated neutrophils as assayed by NBD-phallacidin staining and flow cytometry or by changes in right angle light scattering. Direct addition of cAMP to electropermeabilized neutrophils resulted in attenuation of fMLP-induced actin assembly. Neutrophils stimulated with fMLP demonstrated a rapid redistribution of F-actin from a diffuse cortical location to a peripheral ring as assessed by conventional and scanning confocal fluorescence microscopy. Pretreatment of neutrophils with the combination of IBMX and PGE2 resulted in incomplete development and fragmentation of the cortical ring. We conclude that assembly and redistribution of F-actin may be responsible for cell stiffening after exposure to stimulants and that this response was attenuated by agents that increase intracellular cAMP, by altering the amount and spatial organization of the microfilament component of the cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Wright R. L., Kowada M., Thurston J. M., Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968 Feb;52(2):437–453. [PMC free article] [PubMed] [Google Scholar]
  2. Chien S., Schmid-Schönbein G. W., Sung K. L., Schmalzer E. A., Skalak R. Viscoelastic properties of leukocytes. Kroc Found Ser. 1984;16:19–51. [PubMed] [Google Scholar]
  3. Crutchley D. J., Ryan J. W., Ryan U. S., Fisher G. H. Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells. Studies with lower homologs and calcium antagonists. Biochim Biophys Acta. 1983 Mar 22;751(1):99–107. doi: 10.1016/0005-2760(83)90261-8. [DOI] [PubMed] [Google Scholar]
  4. Doerschuk C. M., Allard M. F., Martin B. A., MacKenzie A., Autor A. P., Hogg J. C. Marginated pool of neutrophils in rabbit lungs. J Appl Physiol (1985) 1987 Nov;63(5):1806–1815. doi: 10.1152/jappl.1987.63.5.1806. [DOI] [PubMed] [Google Scholar]
  5. Downey G. P., Chan C. K., Trudel S., Grinstein S. Actin assembly in electropermeabilized neutrophils: role of intracellular calcium. J Cell Biol. 1990 Jun;110(6):1975–1982. doi: 10.1083/jcb.110.6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Downey G. P., Grinstein S. Receptor-mediated actin assembly in electropermeabilized neutrophils: role of intracellular pH. Biochem Biophys Res Commun. 1989 Apr 14;160(1):18–24. doi: 10.1016/0006-291x(89)91614-8. [DOI] [PubMed] [Google Scholar]
  7. Downey G. P., Gumbay R. S., Doherty D. E., LaBrecque J. F., Henson J. E., Henson P. M., Worthen G. S. Enhancement of pulmonary inflammation by PGE2: evidence for a vasodilator effect. J Appl Physiol (1985) 1988 Feb;64(2):728–741. doi: 10.1152/jappl.1988.64.2.728. [DOI] [PubMed] [Google Scholar]
  8. Downey G. P., Worthen G. S. Neutrophil retention in model capillaries: deformability, geometry, and hydrodynamic forces. J Appl Physiol (1985) 1988 Oct;65(4):1861–1871. doi: 10.1152/jappl.1988.65.4.1861. [DOI] [PubMed] [Google Scholar]
  9. Elson E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem. 1988;17:397–430. doi: 10.1146/annurev.bb.17.060188.002145. [DOI] [PubMed] [Google Scholar]
  10. Engler R. L., Schmid-Schönbein G. W., Pavelec R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983 Apr;111(1):98–111. [PMC free article] [PubMed] [Google Scholar]
  11. Escribano J., Rozengurt E. Cyclic AMP increasing agents rapidly stimulate vimentin phosphorylation in quiescent cultures of Swiss 3T3 cells. J Cell Physiol. 1988 Nov;137(2):223–234. doi: 10.1002/jcp.1041370204. [DOI] [PubMed] [Google Scholar]
  12. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  13. Flores J., DiBona D. R., Beck C. H., Leaf A. The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute. J Clin Invest. 1972 Jan;51(1):118–126. doi: 10.1172/JCI106781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fox J. E., Reynolds C. C., Johnson M. M. Identification of glycoprotein Ib beta as one of the major proteins phosphorylated during exposure of intact platelets to agents that activate cyclic AMP-dependent protein kinase. J Biol Chem. 1987 Sep 15;262(26):12627–12631. [PubMed] [Google Scholar]
  15. Frangos J. A., Eskin S. G., McIntire L. V., Ives C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985 Mar 22;227(4693):1477–1479. doi: 10.1126/science.3883488. [DOI] [PubMed] [Google Scholar]
  16. Glass D. B., Krebs E. G. Protein phosphorylation catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein kinases. Annu Rev Pharmacol Toxicol. 1980;20:363–388. doi: 10.1146/annurev.pa.20.040180.002051. [DOI] [PubMed] [Google Scholar]
  17. Goldman J. E., Abramson B. Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res. 1990 Oct 1;528(2):189–196. doi: 10.1016/0006-8993(90)91657-3. [DOI] [PubMed] [Google Scholar]
  18. Grinstein S., Furuya W. Receptor-mediated activation of electropermeabilized neutrophils. Evidence for a Ca2+- and protein kinase C-independent signaling pathway. J Biol Chem. 1988 Feb 5;263(4):1779–1783. [PubMed] [Google Scholar]
  19. Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Jr, Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101–110. [PMC free article] [PubMed] [Google Scholar]
  20. Hatch G. E., Nichols W. K., Hill H. R. Cyclic nucleotide changes in human neutrophils induced by chemoattractants and chemotactic modulators. J Immunol. 1977 Aug;119(2):450–456. [PubMed] [Google Scholar]
  21. Hogg J. C. Neutrophil kinetics and lung injury. Physiol Rev. 1987 Oct;67(4):1249–1295. doi: 10.1152/physrev.1987.67.4.1249. [DOI] [PubMed] [Google Scholar]
  22. Howard T. H., Meyer W. H. Chemotactic peptide modulation of actin assembly and locomotion in neutrophils. J Cell Biol. 1984 Apr;98(4):1265–1271. doi: 10.1083/jcb.98.4.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jackowski S., Sha'afi R. I. Response of adenosine cyclic 3',5'-monophosphate level in rabbit neutrophils to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. Mol Pharmacol. 1979 Sep;16(2):473–481. [PubMed] [Google Scholar]
  24. Janmey P. A., Euteneuer U., Traub P., Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. 1991 Apr;113(1):155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
  26. Keller H. U., Gerisch G., Wissler J. H. A transient rise in cyclic AMP levels following chemotactic stimulation of neutrophil granulocytes. Cell Biol Int Rep. 1979 Dec;3(9):759–765. doi: 10.1016/0309-1651(79)90082-1. [DOI] [PubMed] [Google Scholar]
  27. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  28. Kraus E., Niederman R. Changes in neutrophil right-angle light scatter can occur independently of alterations in cytoskeletal actin. Cytometry. 1990;11(2):272–282. doi: 10.1002/cyto.990110208. [DOI] [PubMed] [Google Scholar]
  29. Kreisberg J. I., Venkatachalam M. A., Radnik R. A., Patel P. Y. Role of myosin light-chain phosphorylation and microtubules in stress fiber morphology in cultured mesangial cells. Am J Physiol. 1985 Aug;249(2 Pt 2):F227–F235. doi: 10.1152/ajprenal.1985.249.2.F227. [DOI] [PubMed] [Google Scholar]
  30. Lad P. M., Goldberg B. J., Smiley P. A., Olson C. V. Receptor-specific threshold effects of cyclic AMP are involved in the regulation of enzyme release and superoxide production from human neutrophils. Biochim Biophys Acta. 1985 Aug 30;846(2):286–295. doi: 10.1016/0167-4889(85)90076-x. [DOI] [PubMed] [Google Scholar]
  31. Lamb N. J., Fernandez A., Conti M. A., Adelstein R., Glass D. B., Welch W. J., Feramisco J. R. Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase. J Cell Biol. 1988 Jun;106(6):1955–1971. doi: 10.1083/jcb.106.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li A. P., O'Neill J. P., Kawashima K., Hsie A. W. Correlation between changes in intracellular level of cyclic AMP, activation of cyclic AMP-dependent protein kinase, and the morphology of Chinese hamster ovary cells in culture. Arch Biochem Biophys. 1977 Jul;182(1):181–187. doi: 10.1016/0003-9861(77)90297-1. [DOI] [PubMed] [Google Scholar]
  33. Liu Z. Y., Young J. I., Elson E. L. Rat basophilic leukemia cells stiffen when they secrete. J Cell Biol. 1987 Dec;105(6 Pt 2):2933–2943. doi: 10.1083/jcb.105.6.2933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mills J. W., Lubin M. Effect of adenosine 3',5'-cyclic monophosphate on volume and cytoskeleton of MDCK cells. Am J Physiol. 1986 Feb;250(2 Pt 1):C319–C324. doi: 10.1152/ajpcell.1986.250.2.C319. [DOI] [PubMed] [Google Scholar]
  35. Ohta Y., Akiyama T., Nishida E., Sakai H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett. 1987 Oct 5;222(2):305–310. doi: 10.1016/0014-5793(87)80391-5. [DOI] [PubMed] [Google Scholar]
  36. Omann G. M., Allen R. A., Bokoch G. M., Painter R. G., Traynor A. E., Sklar L. A. Signal transduction and cytoskeletal activation in the neutrophil. Physiol Rev. 1987 Jan;67(1):285–322. doi: 10.1152/physrev.1987.67.1.285. [DOI] [PubMed] [Google Scholar]
  37. Pasternak C., Spudich J. A., Elson E. L. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature. 1989 Oct 12;341(6242):549–551. doi: 10.1038/341549a0. [DOI] [PubMed] [Google Scholar]
  38. Petersen N. O., McConnaughey W. B., Elson E. L. Dependence of locally measured cellular deformability on position on the cell, temperature, and cytochalasin B. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5327–5331. doi: 10.1073/pnas.79.17.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pradelles P., Grassi J., Chabardes D., Guiso N. Enzyme immunoassays of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate using acetylcholinesterase. Anal Chem. 1989 Mar 1;61(5):447–453. doi: 10.1021/ac00180a014. [DOI] [PubMed] [Google Scholar]
  40. Rivkin I., Rosenblatt J., Becker E. L. The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cyclic AMP levels by catecholamines, prostaglandins, theophylline and cholera toxin. J Immunol. 1975 Oct;115(4):1126–1134. [PubMed] [Google Scholar]
  41. Roskoski R., Jr Assays of protein kinase. Methods Enzymol. 1983;99:3–6. doi: 10.1016/0076-6879(83)99034-1. [DOI] [PubMed] [Google Scholar]
  42. Sandborg R. R., Smolen J. E. Early biochemical events in leukocyte activation. Lab Invest. 1988 Sep;59(3):300–320. [PubMed] [Google Scholar]
  43. Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
  44. Sha'afi R. I., Molski T. F. Activation of the neutrophil. Prog Allergy. 1988;42:1–64. doi: 10.1159/000318681. [DOI] [PubMed] [Google Scholar]
  45. Sklar L. A., Oades Z. G., Finney D. A. Neutrophil degranulation detected by right angle light scattering: spectroscopic methods suitable for simultaneous analyses of degranulation or shape change, elastase release, and cell aggregation. J Immunol. 1984 Sep;133(3):1483–1487. [PubMed] [Google Scholar]
  46. Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smolen J. E., Korchak H. M., Weissmann G. Increased levels of cyclic adenosine-3',5'-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J Clin Invest. 1980 May;65(5):1077–1085. doi: 10.1172/JCI109760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  49. Stossel T. P. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989 Nov 5;264(31):18261–18264. [PubMed] [Google Scholar]
  50. Takenawa T., Ishitoya J., Nagai Y. Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils. J Biol Chem. 1986 Jan 25;261(3):1092–1098. [PubMed] [Google Scholar]
  51. Tate R. M., Repine J. E. Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis. 1983 Sep;128(3):552–559. doi: 10.1164/arrd.1983.128.3.552. [DOI] [PubMed] [Google Scholar]
  52. Usami S., Chien S., Bertles J. F. Deformability of sickle cells as studied by microsieving. J Lab Clin Med. 1975 Aug;86(2):274–279. [PubMed] [Google Scholar]
  53. Wallace P. J., Wersto R. P., Packman C. H., Lichtman M. A. Chemotactic peptide-induced changes in neutrophil actin conformation. J Cell Biol. 1984 Sep;99(3):1060–1065. doi: 10.1083/jcb.99.3.1060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wallach D., Davies P., Bechtel P., Willingham M., Pastan I. Cyclic AMP-dependent phosphorylation of the actin-binding protein filamin. Adv Cyclic Nucleotide Res. 1978;9:371–379. [PubMed] [Google Scholar]
  55. Worthen G. S., Schwab B., 3rd, Elson E. L., Downey G. P. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science. 1989 Jul 14;245(4914):183–186. doi: 10.1126/science.2749255. [DOI] [PubMed] [Google Scholar]
  56. Yuli I., Snyderman R. Rapid changes in light scattering from human polymorphonuclear leukocytes exposed to chemoattractants. Discrete responses correlated with chemotactic and secretory functions. J Clin Invest. 1984 May;73(5):1408–1417. doi: 10.1172/JCI111345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES