Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Apr;34(4):908–911. doi: 10.1128/jcm.34.4.908-911.1996

Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli.

G A Jacoby 1, P Han 1
PMCID: PMC228915  PMID: 8815106

Abstract

Forty clinical isolates of Escherichia coli and 141 isolates of Klebsiella pneumoniae that either transferred ceftazidime resistance or showed sulbactam enhancement of oxyimino-beta-lactam susceptibility were tested by disk diffusion methodology for susceptibility to aztreonam, cefotaxime, ceftazidime, and cefoxitin. With standard 30 micrograms antibiotic disks, the fraction of these extended-spectrum beta-lactamase (ESBL)-producing isolates testing resistant by National Committee for Clinical Laboratory Standards criteria was lowest (24%) with cefotaxime disks. Forty percent of the E. coli and 29% of the K. pneumoniae isolates appeared susceptible with at least one oxyimino-beta-lactam disk. Ceftazidime and aztreonam disks were equivalent in differentiating ESBL production, and both were superior to cefotaxime disks. Over half the E. Coli and 29% of the K. pneumoniae isolates tested cefoxitin resistant. In 30 isolates, cefoxitin resistance was transmissible and due to a plasmid-mediated AmpC-type beta-lactamase. With a 5-micrograms ceftazidime disk, a breakpoint could be chosen with high sensitivity and specificity for ESBL-producing organisms. Present disk diffusion criteria underestimate the prevalence of ESBL-producing strains.

Full Text

The Full Text of this article is available as a PDF (252.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arstila T., Jacoby G. A., Huovinen P. Evaluation of five different methods to prepare bacterial extracts for the identification of beta-lactamases by isoelectric focusing. J Antimicrob Chemother. 1993 Dec;32(6):809–816. doi: 10.1093/jac/32.6.809. [DOI] [PubMed] [Google Scholar]
  2. Bush K., Singer S. B. Biochemical characteristics of extended broad spectrum beta-lactamases. Infection. 1989 Nov-Dec;17(6):429–433. doi: 10.1007/BF01645566. [DOI] [PubMed] [Google Scholar]
  3. Coetzee J. N., Datta N., Hedges R. W. R factors from Proteus rettgeri. J Gen Microbiol. 1972 Oct;72(3):543–552. doi: 10.1099/00221287-72-3-543. [DOI] [PubMed] [Google Scholar]
  4. Jacoby G. A. Genetics of extended-spectrum beta-lactamases. Eur J Clin Microbiol Infect Dis. 1994;13 (Suppl 1):S2–11. doi: 10.1007/BF02390679. [DOI] [PubMed] [Google Scholar]
  5. Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jacoby G. A., Sutton L. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Jan;35(1):164–169. doi: 10.1128/aac.35.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Katsanis G. P., Spargo J., Ferraro M. J., Sutton L., Jacoby G. A. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum beta-lactamases. J Clin Microbiol. 1994 Mar;32(3):691–696. doi: 10.1128/jcm.32.3.691-696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martínez-Martínez L., Hernández-Allés S., Albertí S., Tomás J. M., Benedi V. J., Jacoby G. A. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob Agents Chemother. 1996 Feb;40(2):342–348. doi: 10.1128/aac.40.2.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
  10. Medeiros A. A., Cohenford M., Jacoby G. A. Five novel plasmid-determined beta-lactamases. Antimicrob Agents Chemother. 1985 May;27(5):715–719. doi: 10.1128/aac.27.5.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  12. Normark S., Grundström T., Bergström S. Susceptibility to penicillins and cephalosporins in beta-lactamase producing strains of E. coli and relative amount of beta-lactamase produced from these strains. Scand J Infect Dis Suppl. 1980;Suppl 25:23–29. [PubMed] [Google Scholar]
  13. Payne D. J., Amyes S. G. Transferable resistance to extended-spectrum beta-lactams: a major threat or a minor inconvenience? J Antimicrob Chemother. 1991 Mar;27(3):255–261. doi: 10.1093/jac/27.3.255. [DOI] [PubMed] [Google Scholar]
  14. Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Takahashi I., Sawai T., Ando T., Yamagishi S. Cefoxitin resistance by a chromosomal cephalosporinase in Escherichia coli. J Antibiot (Tokyo) 1980 Sep;33(9):1037–1042. doi: 10.7164/antibiotics.33.1037. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES