Abstract
Rat hepatic lectins mediate adhesion of isolated rat hepatocytes to synthetic surfaces derivatized with galactosides. Initial weak adhesion is followed by rapid adhesion strengthening. After hepatocytes contact galactose-derivatized gels, the hepatic lectins move rapidly into an inaccessible patch at the adhesive surface (Weisz, O. A., and R. L. Schnaar. 1991. J. Cell Biol. 115:485-493). Hepatic lectin patching, which occurs both at 37 degrees C and 4 degrees C, is not responsible for adhesion strengthening, which does not occur at 4 degrees C. Of various cytoskeletal and metabolic perturbants tested, only a combination of hyperosmotic medium, colchicine, and cytochalasin caused a marked (72%) reduction of adhesion strengthening (without reducing weak cell adhesion). Clathrin and actin were readily detected in the adhesive patch by immunofluorescence microscopy. Rat hepatocytes also adhered avidly to surfaces derivatized with asialofetuin, a high- affinity ligand for the rat hepatic lectins. However, hepatic lectin molecules did not migrate into a patch on the asialofetuin-derivatized surface, suggesting that hepatic lectin-asialofetuin binding may have resulted in the rapid formation of a ring of essentially irreversibly adherent receptors that prevented diffusion of additional lectin molecules into the contact site. The cells were unable to increase their adhesive contact area by flattening onto the derivatized surface. Treatment of cells with cytochalasin, however, did result in an increase in the size of the contact area. Cells adhering to surfaces derivatized with an adhesion-promoting peptide (containing an arg-gly- asp sequence) had larger contact areas than those adhering to galactoside-derivatized surfaces. A model is proposed in which carbohydrate-mediated adhesion causes specific reorganization of cytoskeletal components, leading to strengthened adhesion and a characteristic spherical cell morphology.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bissell D. M., Stamatoglou S. C., Nermut M. V., Hughes R. C. Interactions of rat hepatocytes with type IV collagen, fibronectin and laminin matrices. Distinct matrix-controlled modes of attachment and spreading. Eur J Cell Biol. 1986 Mar;40(1):72–78. [PubMed] [Google Scholar]
- Brandley B. K., Schnaar R. L. Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces: support of fibroblast adhesion and long-term growth. Anal Biochem. 1988 Jul;172(1):270–278. doi: 10.1016/0003-2697(88)90442-3. [DOI] [PubMed] [Google Scholar]
- Brandley B. K., Schnaar R. L. Phosphorylation of extracellular carbohydrates by intact cells. Chicken hepatocytes specifically adhere to and phosphorylate immobilized N-acetylglucosamine. J Biol Chem. 1985 Oct 15;260(23):12474–12483. [PubMed] [Google Scholar]
- Brandley B. K., Shaper J. H., Schnaar R. L. Tumor cell haptotaxis on immobilized N-acetylglucosamine gradients. Dev Biol. 1990 Jul;140(1):161–171. doi: 10.1016/0012-1606(90)90063-o. [DOI] [PubMed] [Google Scholar]
- DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiskum G., Craig S. W., Decker G. L., Lehninger A. L. The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3430–3434. doi: 10.1073/pnas.77.6.3430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger B. Cytoskeleton-associated cell contacts. Curr Opin Cell Biol. 1989 Feb;1(1):103–109. doi: 10.1016/s0955-0674(89)80045-6. [DOI] [PubMed] [Google Scholar]
- Guarnaccia S. P., Schnaar R. L. Hepatocyte adhesion to immobilized carbohydrates. I. Sugar recognition is followed by energy-dependent strengthening. J Biol Chem. 1982 Dec 10;257(23):14288–14292. [PubMed] [Google Scholar]
- Johansson S. Demonstration of high affinity fibronectin receptors on rat hepatocytes in suspension. J Biol Chem. 1985 Feb 10;260(3):1557–1561. [PubMed] [Google Scholar]
- Kaiser J., Stockert R. J., Wolkoff A. W. Effect of monensin on receptor recycling during continuous endocytosis of asialoorosomucoid. Exp Cell Res. 1988 Feb;174(2):472–480. doi: 10.1016/0014-4827(88)90316-3. [DOI] [PubMed] [Google Scholar]
- Kim Y. S., Perdomo J., Nordberg J. Glycoprortein biosynthesis in small intestinal mucosa. I. A study of glycosyltransferases in microsomal subfractions. J Biol Chem. 1971 Sep 10;246(17):5466–5476. [PubMed] [Google Scholar]
- Kolset S. O., Tolleshaug H., Berg T. The effects of colchicine and cytochalasin B on uptake and degradation of asialo-glycoproteins in isolated rat hepatocytes. Exp Cell Res. 1979 Aug;122(1):159–167. doi: 10.1016/0014-4827(79)90570-6. [DOI] [PubMed] [Google Scholar]
- Lee Y. C., Stowell C. P., Krantz M. J. 2-Imino-2-methoxyethyl 1-thioglycosides: new reagents for attaching sugars to proteins. Biochemistry. 1976 Sep 7;15(18):3956–3963. doi: 10.1021/bi00663a008. [DOI] [PubMed] [Google Scholar]
- Mahaffey D. T., Moore M. S., Brodsky F. M., Anderson R. G. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits. J Cell Biol. 1989 May;108(5):1615–1624. doi: 10.1083/jcb.108.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAbee D. D., Clarke B. L., Oka J. A., Weigel P. H. The surface activity of the same subpopulation of galactosyl receptors on isolated rat hepatocytes is modulated by colchicine, monensin, ATP depletion, and chloroquine. J Biol Chem. 1990 Jan 15;265(2):629–635. [PubMed] [Google Scholar]
- McAbee D. D., Oka J. A., Weigel P. H. Loss of surface galactosyl receptor activity on isolated rat hepatocytes induced by monensin or chloroquine requires receptor internalization via a clathrin coated pit pathway. Biochem Biophys Res Commun. 1989 May 30;161(1):261–266. doi: 10.1016/0006-291x(89)91589-1. [DOI] [PubMed] [Google Scholar]
- Mueller S. C., Hubbard A. L. Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: receptor-positive and receptor-negative endosomes. J Cell Biol. 1986 Mar;102(3):932–942. doi: 10.1083/jcb.102.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nermut M. V., Williams L. D., Stamatoglou S. C., Bissell D. M. Ultrastructure of ventral membranes of rat hepatocytes spread on type IV collagen. Eur J Cell Biol. 1986 Oct;42(1):35–44. [PubMed] [Google Scholar]
- Nicol A., Nermut M. V. A new type of substratum adhesion structure in NRK cells revealed by correlated interference reflection and electron microscopy. Eur J Cell Biol. 1987 Jun;43(3):348–357. [PubMed] [Google Scholar]
- Obrink B., Kuhlenschmidt M. S., Roseman S. Adhesive specificity of juvenile rat and chicken liver cells and membranes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1077–1081. doi: 10.1073/pnas.74.3.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka J. A., Christensen M. D., Weigel P. H. Hyperosmolarity inhibits galactosyl receptor-mediated but not fluid phase endocytosis in isolated rat hepatocytes. J Biol Chem. 1989 Jul 15;264(20):12016–12024. [PubMed] [Google Scholar]
- Oka J. A., Weigel P. H. Binding and spreading of hepatocytes on synthetic galactose culture surfaces occur as distinct and separable threshold responses. J Cell Biol. 1986 Sep;103(3):1055–1060. doi: 10.1083/jcb.103.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pless D. D., Lee Y. C., Roseman S., Schnaar R. L. Specific cell adhesion to immobilized glycoproteins demonstrated using new reagents for protein and glycoprotein immobilization. J Biol Chem. 1983 Feb 25;258(4):2340–2349. [PubMed] [Google Scholar]
- Rees D. A., Lloyd C. W., Thom D. Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins. Nature. 1977 May 12;267(5607):124–128. doi: 10.1038/267124a0. [DOI] [PubMed] [Google Scholar]
- Rubin K., Johansson S., Hök M., Obrink B. Substrate adhesion of rat hepatocytes. On the role of fibronectin in cell spreading. Exp Cell Res. 1981 Sep;135(1):127–135. doi: 10.1016/0014-4827(81)90305-0. [DOI] [PubMed] [Google Scholar]
- Salisbury J. L., Condeelis J. S., Satir P. Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J Cell Biol. 1980 Oct;87(1):132–141. doi: 10.1083/jcb.87.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawada N., Tomomura A., Sattler C. A., Sattler G. L., Kleinman H. K., Pitot H. C. Effects of extracellular matrix components on the growth and differentiation of cultured rat hepatocytes. In Vitro Cell Dev Biol. 1987 Apr;23(4):267–273. doi: 10.1007/BF02623709. [DOI] [PubMed] [Google Scholar]
- Schnaar R. L., Langer B. G., Brandley B. K. Reversible covalent immobilization of ligands and proteins on polyacrylamide gels. Anal Biochem. 1985 Dec;151(2):268–281. doi: 10.1016/0003-2697(85)90175-7. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Stamatoglou S. C., Hughes R. C., Lindahl U. Rat hepatocytes in serum-free primary culture elaborate an extensive extracellular matrix containing fibrin and fibronectin. J Cell Biol. 1987 Nov;105(5):2417–2425. doi: 10.1083/jcb.105.5.2417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Townsend R. R., Hardy M. R., Wong T. C., Lee Y. C. Binding of N-linked bovine fetuin glycopeptides to isolated rabbit hepatocytes: Gal/GalNAc hepatic lectin discrimination between Gal beta(1,4)GlcNAc and Gal beta(1,3)GlcNAc in a triantennary structure. Biochemistry. 1986 Sep 23;25(19):5716–5725. doi: 10.1021/bi00367a055. [DOI] [PubMed] [Google Scholar]
- Weisz O. A., Schnaar R. L. Hepatocyte adhesion to carbohydrate-derivatized surfaces. I. Surface topography of the rat hepatic lectin. J Cell Biol. 1991 Oct;115(2):485–493. doi: 10.1083/jcb.115.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods A., Smith C. G., Rees D. A., Wilson G. Stages in specialization of fibroblast adhesion and deposition of extracellular matrix. Eur J Cell Biol. 1983 Nov;32(1):108–116. [PubMed] [Google Scholar]