Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Apr;34(4):918–923. doi: 10.1128/jcm.34.4.918-923.1996

Detection of Mycobacterium tuberculosis by PCR amplification with pan-Mycobacterium primers and hybridization to an M. tuberculosis-specific probe.

V J Tevere 1, P L Hewitt 1, A Dare 1, P Hocknell 1, A Keen 1, J P Spadoro 1, K K Young 1
PMCID: PMC228917  PMID: 8815108

Abstract

Nucleic acid amplification techniques such as the PCR are very useful in the rapid diagnosis of infections by Mycobacterium tuberculosis. However, recent studies have shown that the accuracy of results can vary widely when tests are performed with nonstandardized reagents. We have developed a PCR assay for the detection of M. tuberculosis that is both rapid and accurate. The assay reagents are standardized and quality controlled. False-positive results due to carryover contamination are prevented by the incorporation of dUTP coupled with uracil-N-glycosylase restriction. This assay also employs pan-Mycobacterium amplification primers, allowing for flexibility in the mycobacterial species that can be identified from a single amplification reaction. The amplification is very sensitive; amplification products generated from as few as three bacteria can be detected by agarose gel electrophoresis. DNAs isolated from 33 of 34 mycobacterial species tested were amplified efficiently. Only DNA from Mycobacterium simiae did not amplify. The amplification is also very specific. Amplification products were generated only from the DNAs of bacteria in closely related genera such as Corynebacterium. The nonmycobacterial amplicons do not pose a problem, as they do not hybridize to mycobacterium-specific probes. Hybridization of amplicons to an M. tuberculosis-specific probe allows for the unambiguous identification of M. tuberculosis complex organisms. The clinical performance of this PCR assay was evaluated against that of culture in 662 respiratory specimens. Sensitivities of 100 and 73.1% were obtained from smear-positive and -negative respiratory specimens, respectively. The corresponding specificities were 100 and 99.8%. The high sensitivity and specificity, coupled with the potential for detecting a wide range of mycobacteria, make this assay a useful tool in the clinical management of mycobacterial infections.

Full Text

The Full Text of this article is available as a PDF (241.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böddinghaus B., Rogall T., Flohr T., Blöcker H., Böttger E. C. Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol. 1990 Aug;28(8):1751–1759. doi: 10.1128/jcm.28.8.1751-1759.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cousins D. V., Wilton S. D., Francis B. R., Gow B. L. Use of polymerase chain reaction for rapid diagnosis of tuberculosis. J Clin Microbiol. 1992 Jan;30(1):255–258. doi: 10.1128/jcm.30.1.255-258.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Wit D., Steyn L., Shoemaker S., Sogin M. Direct detection of Mycobacterium tuberculosis in clinical specimens by DNA amplification. J Clin Microbiol. 1990 Nov;28(11):2437–2441. doi: 10.1128/jcm.28.11.2437-2441.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Del Portillo P., Murillo L. A., Patarroyo M. E. Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol. 1991 Oct;29(10):2163–2168. doi: 10.1128/jcm.29.10.2163-2168.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eisenach K. D., Cave M. D., Bates J. H., Crawford J. T. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis. 1990 May;161(5):977–981. doi: 10.1093/infdis/161.5.977. [DOI] [PubMed] [Google Scholar]
  6. Fournier A. M., Dickinson G. M., Erdfrocht I. R., Cleary T., Fischl M. A. Tuberculosis and nontuberculous mycobacteriosis in patients with AIDS. Chest. 1988 Apr;93(4):772–775. doi: 10.1378/chest.93.4.772. [DOI] [PubMed] [Google Scholar]
  7. Glennon M., Smith T., Cormican M., Noone D., Barry T., Maher M., Dawson M., Gilmartin J. J., Gannon F. The ribosomal intergenic spacer region: a target for the PCR based diagnosis of tuberculosis. Tuber Lung Dis. 1994 Oct;75(5):353–360. doi: 10.1016/0962-8479(94)90081-7. [DOI] [PubMed] [Google Scholar]
  8. Guthertz L. S., Damsker B., Bottone E. J., Ford E. G., Midura T. F., Janda J. M. Mycobacterium avium and Mycobacterium intracellulare infections in patients with and without AIDS. J Infect Dis. 1989 Dec;160(6):1037–1041. doi: 10.1093/infdis/160.6.1037. [DOI] [PubMed] [Google Scholar]
  9. Hance A. J., Grandchamp B., Lévy-Frébault V., Lecossier D., Rauzier J., Bocart D., Gicquel B. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol Microbiol. 1989 Jul;3(7):843–849. doi: 10.1111/j.1365-2958.1989.tb00233.x. [DOI] [PubMed] [Google Scholar]
  10. Hermans P. W., Schuitema A. R., Van Soolingen D., Verstynen C. P., Bik E. M., Thole J. E., Kolk A. H., van Embden J. D. Specific detection of Mycobacterium tuberculosis complex strains by polymerase chain reaction. J Clin Microbiol. 1990 Jun;28(6):1204–1213. doi: 10.1128/jcm.28.6.1204-1213.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jost K. C., Jr, Dunbar D. F., Barth S. S., Headley V. L., Elliott L. B. Identification of Mycobacterium tuberculosis and M. avium complex directly from smear-positive sputum specimens and BACTEC 12B cultures by high-performance liquid chromatography with fluorescence detection and computer-driven pattern recognition models. J Clin Microbiol. 1995 May;33(5):1270–1277. doi: 10.1128/jcm.33.5.1270-1277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee B. W., Tan J. A., Wong S. C., Tan C. B., Yap H. K., Low P. S., Chia J. N., Tay J. S. DNA amplification by the polymerase chain reaction for the rapid diagnosis of tuberculous meningitis. Comparison of protocols involving three mycobacterial DNA sequences, IS6110, 65 kDa antigen, and MPB64. J Neurol Sci. 1994 May;123(1-2):173–179. doi: 10.1016/0022-510x(94)90220-8. [DOI] [PubMed] [Google Scholar]
  13. Loeffelholz M. J., Lewinski C. A., Silver S. R., Purohit A. P., Herman S. A., Buonagurio D. A., Dragon E. A. Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2847–2851. doi: 10.1128/jcm.30.11.2847-2851.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  15. Noordhoek G. T., Kolk A. H., Bjune G., Catty D., Dale J. W., Fine P. E., Godfrey-Faussett P., Cho S. N., Shinnick T., Svenson S. B. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol. 1994 Feb;32(2):277–284. doi: 10.1128/jcm.32.2.277-284.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patel R. J., Fries J. W., Piessens W. F., Wirth D. F. Sequence analysis and amplification by polymerase chain reaction of a cloned DNA fragment for identification of Mycobacterium tuberculosis. J Clin Microbiol. 1990 Mar;28(3):513–518. doi: 10.1128/jcm.28.3.513-518.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Patel R., Kvach J. T., Mounts P. Isolation and restriction endonuclease analysis of mycobacterial DNA. J Gen Microbiol. 1986 Feb;132(2):541–551. doi: 10.1099/00221287-132-2-541. [DOI] [PubMed] [Google Scholar]
  18. Shafer R. W., Sierra M. F. Mycobacterium xenopi, Mycobacterium fortuitum, Mycobacterium kansasii, and other nontuberculous mycobacteria in an area of endemicity for AIDS. Clin Infect Dis. 1992 Jul;15(1):161–162. doi: 10.1093/clinids/15.1.161. [DOI] [PubMed] [Google Scholar]
  19. Shankar P., Manjunath N., Mohan K. K., Prasad K., Behari M., Shriniwas, Ahuja G. K. Rapid diagnosis of tuberculous meningitis by polymerase chain reaction. Lancet. 1991 Jan 5;337(8732):5–7. doi: 10.1016/0140-6736(91)93328-7. [DOI] [PubMed] [Google Scholar]
  20. Sjöbring U., Mecklenburg M., Andersen A. B., Miörner H. Polymerase chain reaction for detection of Mycobacterium tuberculosis. J Clin Microbiol. 1990 Oct;28(10):2200–2204. doi: 10.1128/jcm.28.10.2200-2204.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sritharan V., Barker R. H., Jr A simple method for diagnosing M. tuberculosis infection in clinical samples using PCR. Mol Cell Probes. 1991 Oct;5(5):385–395. doi: 10.1016/s0890-8508(06)80011-3. [DOI] [PubMed] [Google Scholar]
  22. Yates M. D., Pozniak A., Grange J. M. Isolation of mycobacteria from patients seropositive for the human immunodeficiency virus (HIV) in south east England: 1984-92. Thorax. 1993 Oct;48(10):990–995. doi: 10.1136/thx.48.10.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young L. S., Inderlied C. B., Berlin O. G., Gottlieb M. S. Mycobacterial infections in AIDS patients, with an emphasis on the Mycobacterium avium complex. Rev Infect Dis. 1986 Nov-Dec;8(6):1024–1033. doi: 10.1093/clinids/8.6.1024. [DOI] [PubMed] [Google Scholar]
  24. Yuen L. K., Ross B. C., Jackson K. M., Dwyer B. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J Clin Microbiol. 1993 Jun;31(6):1615–1618. doi: 10.1128/jcm.31.6.1615-1618.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zolg J. W., Philippi-Schulz S. The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J Clin Microbiol. 1994 Nov;32(11):2801–2812. doi: 10.1128/jcm.32.11.2801-2812.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES