Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Nov 1;115(3):597–605. doi: 10.1083/jcb.115.3.597

Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA

PMCID: PMC2289182  PMID: 1918155

Abstract

A reconstruction, at 40 A, of the Escherichia coli ribosome imaged by cryo-electron microscopy, obtained from 303 projections by a single- particle method of reconstruction, shows the two subunits with unprecedented clarity. In the interior of the subunits, a complex distribution of higher mass density is recognized, which is attributed to ribosomal RNA. The masses corresponding to the 16S and 23S components are linked in the region of the platform of the small subunit. Thus the topography of the rRNA regions responsible for protein synthesis can be described.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arad T., Piefke J., Weinstein S., Gewitz H. S., Yonath A., Wittmann H. G. Three-dimensional image reconstruction from ordered arrays of 70S ribosomes. Biochimie. 1987 Sep;69(9):1001–1006. doi: 10.1016/0300-9084(87)90234-3. [DOI] [PubMed] [Google Scholar]
  2. Burma D. P., Nag B., Tewari D. S. Association of 16S and 23S ribosomal RNAs to form a bimolecular complex. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4875–4878. doi: 10.1073/pnas.80.16.4875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burma D. P., Tewari D. S., Srivastava A. K. Ribosomal activity of the 16 S.23 S RNA complex. Arch Biochem Biophys. 1985 Jun;239(2):427–435. doi: 10.1016/0003-9861(85)90708-8. [DOI] [PubMed] [Google Scholar]
  4. Capel M. S., Kjeldgaard M., Engelman D. M., Moore P. B. Positions of S2, S13, S16, S17, S19 and S21 in the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1988 Mar 5;200(1):65–87. doi: 10.1016/0022-2836(88)90334-8. [DOI] [PubMed] [Google Scholar]
  5. Carazo J. M., Wagenknecht T., Frank J. Variations of the three-dimensional structure of the Escherichia coli ribosome in the range of overlap views. An application of the methods of multicone and local single-cone three-dimensional reconstruction. Biophys J. 1989 Mar;55(3):465–477. doi: 10.1016/S0006-3495(89)82840-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crichton R. R., Engleman D. M., Haas J., Koch M. H., Moore P. B., Parfait R., Stuhrmann H. B. Contrast variation study of specifically deuterated Escherichia coli ribosomal subunits. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5547–5550. doi: 10.1073/pnas.74.12.5547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frank J. Classification of macromolecular assemblies studied as 'single particles'. Q Rev Biophys. 1990 Aug;23(3):281–329. doi: 10.1017/s0033583500005564. [DOI] [PubMed] [Google Scholar]
  8. Frank J., Verschoor A., Boublik M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science. 1981 Dec 18;214(4527):1353–1355. doi: 10.1126/science.7313694. [DOI] [PubMed] [Google Scholar]
  9. Herr W., Chapman N. M., Noller H. F. Mechanism of ribosomal subunit association: discrimination of specific sites in 16 S RNA essential for association activity. J Mol Biol. 1979 Jun 5;130(4):433–449. doi: 10.1016/0022-2836(79)90433-9. [DOI] [PubMed] [Google Scholar]
  10. Jeng T. W., Crowther R. A., Stubbs G., Chiu W. Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. J Mol Biol. 1989 Jan 5;205(1):251–257. doi: 10.1016/0022-2836(89)90379-3. [DOI] [PubMed] [Google Scholar]
  11. Korn A. P., Spitnik-Elson P., Elson D., Ottensmeyer F. P. Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur J Cell Biol. 1983 Sep;31(2):334–340. [PubMed] [Google Scholar]
  12. Kühlbrandt W. Discrimination of protein and nucleic acids by electron microscopy using contrast variation. Ultramicroscopy. 1982;7(3):221–232. doi: 10.1016/0304-3991(82)90169-3. [DOI] [PubMed] [Google Scholar]
  13. Kühlbrandt W., Unwin P. N. Distribution of RNA and protein in crystalline eukaryotic ribosomes. J Mol Biol. 1982 Apr 15;156(3):431–448. doi: 10.1016/0022-2836(82)90259-5. [DOI] [PubMed] [Google Scholar]
  14. Lake J. A. Ribosome structure determined by electron microscopy of Escherichia coli small subunits, large subunits and monomeric ribosomes. J Mol Biol. 1976 Jul 25;105(1):131–139. doi: 10.1016/0022-2836(76)90200-x. [DOI] [PubMed] [Google Scholar]
  15. Lambert J. M., Traut R. R. The subunit interface of the Escherichia coli ribosome. Identification of proteins at the interface between the 30 S and 50 S subunits by crosslinking with 2-iminothiolane. J Mol Biol. 1981 Jul 5;149(3):451–476. doi: 10.1016/0022-2836(81)90481-2. [DOI] [PubMed] [Google Scholar]
  16. Malhotra A., Tan R. K., Harvey S. C. Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1950–1954. doi: 10.1073/pnas.87.5.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mandiyan V., Tumminia S., Wall J. S., Hainfeld J. F., Boublik M. Protein-induced conformational changes in 16 S ribosomal RNA during the initial assembly steps of the Escherichia coli 30 S ribosomal subunit. J Mol Biol. 1989 Nov 20;210(2):323–336. doi: 10.1016/0022-2836(89)90334-3. [DOI] [PubMed] [Google Scholar]
  18. Milligan R. A., Unwin P. N. Location of exit channel for nascent protein in 80S ribosome. Nature. 1986 Feb 20;319(6055):693–695. doi: 10.1038/319693a0. [DOI] [PubMed] [Google Scholar]
  19. Oakes M. I., Lake J. A. DNA-hybridization electron microscopy. Localization of five regions of 16 S rRNA on the surface of 30 S ribosomal subunits. J Mol Biol. 1990 Feb 20;211(4):897–906. doi: 10.1016/0022-2836(90)90082-W. [DOI] [PubMed] [Google Scholar]
  20. Ofengand J., Liou R. Correct codon--anticodon base pairing at the 5'-anticodon position blocks covalent cross-linking between transfer ribonucleic acid and 16S RNA at the ribosomal P site. Biochemistry. 1981 Feb 3;20(3):552–559. doi: 10.1021/bi00506a017. [DOI] [PubMed] [Google Scholar]
  21. Olson H. M., Olah T. V., Cooperman B. S., Glitz D. G. Immune electron microscopic localization of dinitrophenyl-modified ribosomal protein S19 in reconstituted Escherichia coli 30 S subunits using antibodies to dinitrophenol. J Biol Chem. 1988 Apr 5;263(10):4801–4806. [PubMed] [Google Scholar]
  22. Radermacher M., Frank J. Representation of three-dimensionally reconstructed objects in electron microscopy by surfaces of equal density. J Microsc. 1984 Oct;136(Pt 1):77–85. doi: 10.1111/j.1365-2818.1984.tb02547.x. [DOI] [PubMed] [Google Scholar]
  23. Radermacher M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech. 1988 Aug;9(4):359–394. doi: 10.1002/jemt.1060090405. [DOI] [PubMed] [Google Scholar]
  24. Radermacher M., Wagenknecht T., Verschoor A., Frank J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc. 1987 May;146(Pt 2):113–136. doi: 10.1111/j.1365-2818.1987.tb01333.x. [DOI] [PubMed] [Google Scholar]
  25. Radermacher M., Wagenknecht T., Verschoor A., Frank J. Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J. 1987 Apr;6(4):1107–1114. doi: 10.1002/j.1460-2075.1987.tb04865.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rheinberger H. J., Geigenmüller U., Wedde M., Nierhaus K. H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 1988;164:658–670. doi: 10.1016/s0076-6879(88)64076-6. [DOI] [PubMed] [Google Scholar]
  27. Robertson J. M., Wintermeyer W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol. 1981 Sep 5;151(1):57–79. doi: 10.1016/0022-2836(81)90221-7. [DOI] [PubMed] [Google Scholar]
  28. Serdyuk I. N., Grenader A. K. Joint use of light, X-ray and neutron scattering for investigation of RNA and protein mutual distribution within the 50S subparticle of E. coli ribosomes. FEBS Lett. 1975 Nov 1;59(1):133–136. doi: 10.1016/0014-5793(75)80358-9. [DOI] [PubMed] [Google Scholar]
  29. Shatsky I. N., Evstafieva A. G., Bystrova T. F., Bogdanov A. A., Vasiliev V. D. Topography of RNA in the ribosome: location of the 3'-end of 5 S RNA on the central protuberance of the 50 S subunit. FEBS Lett. 1980 Nov 17;121(1):97–100. doi: 10.1016/0014-5793(80)81274-9. [DOI] [PubMed] [Google Scholar]
  30. Stern S., Weiser B., Noller H. F. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol. 1988 Nov 20;204(2):447–481. doi: 10.1016/0022-2836(88)90588-8. [DOI] [PubMed] [Google Scholar]
  31. Toyoshima C., Unwin N. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature. 1988 Nov 17;336(6196):247–250. doi: 10.1038/336247a0. [DOI] [PubMed] [Google Scholar]
  32. Vassilenko S. K., Carbon P., Ebel J. P., Ehresmann C. Topography of 16 S RNA in 30 S subunits and 70 S ribosomes accessibility to cobra venom ribonuclease. J Mol Biol. 1981 Nov 15;152(4):699–721. doi: 10.1016/0022-2836(81)90123-6. [DOI] [PubMed] [Google Scholar]
  33. Verschoor A., Frank J., Radermacher M., Wagenknecht T., Boublik M. Three-dimensional reconstruction of the 30 S ribosomal subunit from randomly oriented particles. J Mol Biol. 1984 Sep 25;178(3):677–698. doi: 10.1016/0022-2836(84)90245-6. [DOI] [PubMed] [Google Scholar]
  34. Verschoor A., Frank J. Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol. 1990 Aug 5;214(3):737–749. doi: 10.1016/0022-2836(90)90289-X. [DOI] [PubMed] [Google Scholar]
  35. Verschoor A., Frank J., Wagenknecht T., Boublik M. Computer-averaged views of the 70 S monosome from Escherichia coli. J Mol Biol. 1986 Feb 20;187(4):581–590. doi: 10.1016/0022-2836(86)90336-0. [DOI] [PubMed] [Google Scholar]
  36. Wagenknecht T., Carazo J. M., Radermacher M., Frank J. Three-dimensional reconstruction of the ribosome from Escherichia coli. Biophys J. 1989 Mar;55(3):455–464. doi: 10.1016/S0006-3495(89)82839-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wagenknecht T., Grassucci R., Frank J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J Mol Biol. 1988 Jan 5;199(1):137–147. doi: 10.1016/0022-2836(88)90384-1. [DOI] [PubMed] [Google Scholar]
  38. Wittmann H. G. Architecture of prokaryotic ribosomes. Annu Rev Biochem. 1983;52:35–65. doi: 10.1146/annurev.bi.52.070183.000343. [DOI] [PubMed] [Google Scholar]
  39. Wittmann H. G. Components of bacterial ribosomes. Annu Rev Biochem. 1982;51:155–183. doi: 10.1146/annurev.bi.51.070182.001103. [DOI] [PubMed] [Google Scholar]
  40. Yonath A., Leonard K. R., Wittmann H. G. A tunnel in the large ribosomal subunit revealed by three-dimensional image reconstruction. Science. 1987 May 15;236(4803):813–816. doi: 10.1126/science.3576200. [DOI] [PubMed] [Google Scholar]
  41. Yonath A., Wittmann H. G. Challenging the three-dimensional structure of ribosomes. Trends Biochem Sci. 1989 Aug;14(8):329–335. doi: 10.1016/0968-0004(89)90166-7. [DOI] [PubMed] [Google Scholar]
  42. van Heel M., Frank J. Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy. 1981;6(2):187–194. doi: 10.1016/0304-3991(81)90059-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES