Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Dec 1;115(5):1333–1344. doi: 10.1083/jcb.115.5.1333

Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization

PMCID: PMC2289232  PMID: 1955477

Abstract

We have indirectly analyzed the role of tau in generating the highly organized microtubule (MT) array of the axon. Axons contain MT arrays of uniform polarity orientation, plus ends distal to the cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-673). Surprisingly, these MTs do not radiate from a single discrete nucleating structure in the cell body (Sharp, G. A., K. Weber, and M. Osborn. 1982. Eur. J. Cell Biol. 29: 97-103), but rather stop and start at multiple sites along the length of the axon (Bray, D., and M. B. Bunge. 1981. J. Neurocytol. 10:589-605). When Sf9 ovarian cells are induced to express high levels of tau protein, they develop cellular processes which are similar in appearance to axons and which contain dense arrays of MTs (Knops, J., K. S. Kosik, G. Lee, J. D. Pardee, L. Cohen-Gould, and L. McConlogue. 1991. J. Cell Biol. 114:725- 734). We have analyzed the organization of MTs within these arrays, and determined it to be similar, but not identical, to the organization of MTs within the axon. The caliber, MT number, and MT density vary significantly from process to process, but on average are manyfold higher in the tau-induced processes than typically found in axons. Greater than 89% of the MTs in the processes are oriented with their plus ends distal to the cell body, and this proportion is even higher in the processes that are most similar to axons with regard to caliber, MT number, and MT density. Similar to the situation in the axon, MTs are discontinuous along the length of the tau-induced processes, and do not emanate from any observable nucleating structure in the cell body. We have also identified bundles of MTs throughout the cell bodies of the Sf9 cells induced to express tau. Similar to the MT arrays in the processes, these MT bundles are not visibly associated with any other cytological structures that might regulate their polarity orientation. Nevertheless, these bundles consist of MTs most (greater than 82%) of which have the same polarity orientation. Collectively, these results suggest that tau may play a fundamental role in generating MT organization in the axon. In particular, a key property of tau may be to bundle MTs preferentially with the same polarity orientation.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS E. C., HERTIG A. T. STUDIES ON GUINEA PIG OOCYTES. I. ELECTRON MICROSCOPIC OBSERVATIONS ON THE DEVELOPMENT OF CYTOPLASMIC ORGANELLES IN OOCYTES OF PRIMORDIAL AND PRIMARY FOLLICLES. J Cell Biol. 1964 Jun;21:397–427. doi: 10.1083/jcb.21.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baas P. W., Black M. M., Banker G. A. Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol. 1989 Dec;109(6 Pt 1):3085–3094. doi: 10.1083/jcb.109.6.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baas P. W., Black M. M. Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol. 1990 Aug;111(2):495–509. doi: 10.1083/jcb.111.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baas P. W., Deitch J. S., Black M. M., Banker G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8335–8339. doi: 10.1073/pnas.85.21.8335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baas P. W., Heidemann S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J Cell Biol. 1986 Sep;103(3):917–927. doi: 10.1083/jcb.103.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baas P. W., Sinclair G. I., Heidemann S. R. Role of microtubules in the cytoplasmic compartmentation of neurons. Brain Res. 1987 Sep 8;420(1):73–81. doi: 10.1016/0006-8993(87)90241-1. [DOI] [PubMed] [Google Scholar]
  7. Baas P. W., Slaughter T., Brown A., Black M. M. Microtubule dynamics in axons and dendrites. J Neurosci Res. 1991 Sep;30(1):134–153. doi: 10.1002/jnr.490300115. [DOI] [PubMed] [Google Scholar]
  8. Baas P. W., White L. A., Heidemann S. R. Microtubule polarity reversal accompanies regrowth of amputated neurites. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5272–5276. doi: 10.1073/pnas.84.15.5272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bartlett W. P., Banker G. A. An electron microscopic study of the development of axons and dendrites by hippocampal neurons in culture. I. Cells which develop without intercellular contacts. J Neurosci. 1984 Aug;4(8):1944–1953. doi: 10.1523/JNEUROSCI.04-08-01944.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Binder L. I., Frankfurter A., Rebhun L. I. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985 Oct;101(4):1371–1378. doi: 10.1083/jcb.101.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Black M. M., Baas P. W. The basis of polarity in neurons. Trends Neurosci. 1989 Jun;12(6):211–214. doi: 10.1016/0166-2236(89)90124-0. [DOI] [PubMed] [Google Scholar]
  12. Black M. M. Comparison of the effects of microtubule-associated protein 2 and tau on the packing density of in vitro assembled microtubules. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7783–7787. doi: 10.1073/pnas.84.21.7783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  14. Bray D., Hollenbeck P. J. Growth cone motility and guidance. Annu Rev Cell Biol. 1988;4:43–61. doi: 10.1146/annurev.cb.04.110188.000355. [DOI] [PubMed] [Google Scholar]
  15. Bray D., Thomas C., Shaw G. Growth cone formation in cultures of sensory neurons. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5226–5229. doi: 10.1073/pnas.75.10.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Bridgman P. C., Dailey M. E. The organization of myosin and actin in rapid frozen nerve growth cones. J Cell Biol. 1989 Jan;108(1):95–109. doi: 10.1083/jcb.108.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bré M. H., Karsenti E. Effects of brain microtubule-associated proteins on microtubule dynamics and the nucleating activity of centrosomes. Cell Motil Cytoskeleton. 1990;15(2):88–98. doi: 10.1002/cm.970150205. [DOI] [PubMed] [Google Scholar]
  18. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Burton P. R. Dendrites of mitral cell neurons contain microtubules of opposite polarity. Brain Res. 1988 Nov 8;473(1):107–115. doi: 10.1016/0006-8993(88)90321-6. [DOI] [PubMed] [Google Scholar]
  20. Burton P. R., Paige J. L. Polarity of axoplasmic microtubules in the olfactory nerve of the frog. Proc Natl Acad Sci U S A. 1981 May;78(5):3269–3273. doi: 10.1073/pnas.78.5.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Caceres A., Kosik K. S. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature. 1990 Feb 1;343(6257):461–463. doi: 10.1038/343461a0. [DOI] [PubMed] [Google Scholar]
  22. Chalfie M., Thomson J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol. 1979 Jul;82(1):278–289. doi: 10.1083/jcb.82.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cheng T. P., Reese T. S. Polarized compartmentalization of organelles in growth cones from developing optic tectum. J Cell Biol. 1985 Oct;101(4):1473–1480. doi: 10.1083/jcb.101.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Dotti C. G., Banker G. A., Binder L. I. The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience. 1987 Oct;23(1):121–130. doi: 10.1016/0306-4522(87)90276-4. [DOI] [PubMed] [Google Scholar]
  25. Drubin D. G., Feinstein S. C., Shooter E. M., Kirschner M. W. Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol. 1985 Nov;101(5 Pt 1):1799–1807. doi: 10.1083/jcb.101.5.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Drubin D. G., Kirschner M. W. Tau protein function in living cells. J Cell Biol. 1986 Dec;103(6 Pt 2):2739–2746. doi: 10.1083/jcb.103.6.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Goedert M., Crowther R. A., Garner C. C. Molecular characterization of microtubule-associated proteins tau and MAP2. Trends Neurosci. 1991 May;14(5):193–199. doi: 10.1016/0166-2236(91)90105-4. [DOI] [PubMed] [Google Scholar]
  28. Hagestedt T., Lichtenberg B., Wille H., Mandelkow E. M., Mandelkow E. Tau protein becomes long and stiff upon phosphorylation: correlation between paracrystalline structure and degree of phosphorylation. J Cell Biol. 1989 Oct;109(4 Pt 1):1643–1651. doi: 10.1083/jcb.109.4.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Heidemann S. R., McIntosh J. R. Visualization of the structural polarity of microtubules. Nature. 1980 Jul 31;286(5772):517–519. doi: 10.1038/286517a0. [DOI] [PubMed] [Google Scholar]
  32. Hirokawa N., Shiomura Y., Okabe S. Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol. 1988 Oct;107(4):1449–1459. doi: 10.1083/jcb.107.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  34. Kanai Y., Takemura R., Oshima T., Mori H., Ihara Y., Yanagisawa M., Masaki T., Hirokawa N. Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J Cell Biol. 1989 Sep;109(3):1173–1184. doi: 10.1083/jcb.109.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Khawaja S., Gundersen G. G., Bulinski J. C. Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosination level. J Cell Biol. 1988 Jan;106(1):141–149. doi: 10.1083/jcb.106.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Knops J., Kosik K. S., Lee G., Pardee J. D., Cohen-Gould L., McConlogue L. Overexpression of tau in a nonneuronal cell induces long cellular processes. J Cell Biol. 1991 Aug;114(4):725–733. doi: 10.1083/jcb.114.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kosik K. S., Finch E. A. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987 Oct;7(10):3142–3153. doi: 10.1523/JNEUROSCI.07-10-03142.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lasek R. J. Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):313–327. doi: 10.1098/rstb.1982.0135. [DOI] [PubMed] [Google Scholar]
  39. Lyser K. M. An electron-microscopic study of centrioles in differentiating motor neuroblasts. J Embryol Exp Morphol. 1968 Nov;20(3):343–354. [PubMed] [Google Scholar]
  40. Matus A. Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci. 1988;11:29–44. doi: 10.1146/annurev.ne.11.030188.000333. [DOI] [PubMed] [Google Scholar]
  41. Peng I., Binder L. I., Black M. M. Biochemical and immunological analyses of cytoskeletal domains of neurons. J Cell Biol. 1986 Jan;102(1):252–262. doi: 10.1083/jcb.102.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reinsch S. S., Mitchison T. J., Kirschner M. Microtubule polymer assembly and transport during axonal elongation. J Cell Biol. 1991 Oct;115(2):365–379. doi: 10.1083/jcb.115.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sasaki S., Stevens J. K., Bodick N. Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite. Brain Res. 1983 Jan 24;259(2):193–206. doi: 10.1016/0006-8993(83)91250-7. [DOI] [PubMed] [Google Scholar]
  44. Sharp G. A., Weber K., Osborn M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol. 1982 Nov;29(1):97–103. [PubMed] [Google Scholar]
  45. Sinclair G. I., Baas P. W., Heidemann S. R. Role of microtubules in the cytoplasmic compartmentation of neurons. II. Endocytosis in the growth cone and neurite shaft. Brain Res. 1988 May 31;450(1-2):60–68. doi: 10.1016/0006-8993(88)91544-2. [DOI] [PubMed] [Google Scholar]
  46. Webster D. R., Gundersen G. G., Bulinski J. C., Borisy G. G. Differential turnover of tyrosinated and detyrosinated microtubules. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9040–9044. doi: 10.1073/pnas.84.24.9040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wuerker R. B., Kirkpatrick J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol. 1972;33:45–75. doi: 10.1016/s0074-7696(08)61448-5. [DOI] [PubMed] [Google Scholar]
  48. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES