Abstract
Our previous report (Muir, D., S. Varon, and M. Manthorpe. 1990. J. Cell Biol. 109:2663-2672) described the isolation and partial characterization of a 55-kD antiproliferative protein found in Schwann cell (SC) and schwannoma cell line-conditioned media and we concluded that SC proliferation is under negative autocrine control. In the present study the 55-kD protein was found to possess metalloprotease activity and stromelysin immunoreactivity. The SC-derived metalloprotease shares many properties with stromelysin isolated from other sources including the ability to cleave fibronectin (FN). Furthermore, limited proteolysis of FN by the SC-derived protease generated a FN fragment which itself expresses a potent antiproliferative activity for SCs. The active FN fragment corresponds to the 29-kD amino-terminal region of the FN molecule which was also identified as an active component in SC CM. Additional evidence that a proteolytic fragment of FN can possess antiproliferative activity for SCs was provided by the finding that plasmin can generate an amino- terminal FN fragment which mimicked the activity of the SC metalloprotease-generated antiproliferative FN fragment. Both the 55-kD SC metalloprotease and the 29-kD FN fragment could completely and reversibly inhibit proliferation of SCs treated with various mitogens and both were largely ineffective at inhibiting proliferation by immortalized or transformed SC lines. Normal and transformed SC types do secrete the proform of stromelysin, however, transformed cultures do not produce activated stromelysin and thus cannot generate the antiproliferative fragment of FN. These results suggest that, once activated, a SC-derived protease similar to stromelysin cleaves FN and generates an antiproliferative activity which can maintain normal SC quiescence in vitro.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez-Buylla A., Valinsky J. E. Production of plasminogen activator in cultures of superior cervical ganglia and isolated Schwann cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3519–3523. doi: 10.1073/pnas.82.10.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bansal R., Pfeiffer S. E. Regulated galactolipid synthesis and cell surface expression in Schwann cell line D6P2T. J Neurochem. 1987 Dec;49(6):1902–1911. doi: 10.1111/j.1471-4159.1987.tb02453.x. [DOI] [PubMed] [Google Scholar]
- Baron-Van Evercooren A., Kleinman H. K., Seppä H. E., Rentier B., Dubois-Dalcq M. Fibronectin promotes rat Schwann cell growth and motility. J Cell Biol. 1982 Apr;93(1):211–216. doi: 10.1083/jcb.93.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin J. R., Murphy G., Werb Z. Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem. 1985 Oct 5;260(22):12367–12376. [PubMed] [Google Scholar]
- Davis J. B., Stroobant P. Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J Cell Biol. 1990 Apr;110(4):1353–1360. doi: 10.1083/jcb.110.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccleston P. A., Jessen K. R., Mirsky R. Transforming growth factor-beta and gamma-interferon have dual effects on growth of peripheral glia. J Neurosci Res. 1989 Dec;24(4):524–530. doi: 10.1002/jnr.490240410. [DOI] [PubMed] [Google Scholar]
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
- Engvall E., Krusius T., Wewer U., Ruoslahti E. Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch Biochem Biophys. 1983 Apr 15;222(2):649–656. doi: 10.1016/0003-9861(83)90562-3. [DOI] [PubMed] [Google Scholar]
- Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
- Garcia-Pardo A., Pearlstein E., Frangione B. Primary structure of human plasma fibronectin. The 29,000-dalton NH2-terminal domain. J Biol Chem. 1983 Oct 25;258(20):12670–12674. [PubMed] [Google Scholar]
- Goldberg G. I., Frisch S. M., He C., Wilhelm S. M., Reich R., Collier I. E. Secreted proteases. Regulation of their activity and their possible role in metastasis. Ann N Y Acad Sci. 1990;580:375–384. doi: 10.1111/j.1749-6632.1990.tb17945.x. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Dunn B. M., Grant D. M., Schumacher B., Bartley D. M., Eisenstein R. Synthetic peptides of the amino-terminus of fibronectin inhibit endothelial cell growth. Cell Biol Int Rep. 1989 Oct;13(10):891–900. doi: 10.1016/0309-1651(89)90131-8. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Kramer-Bjerke J., Grant D., Christianson G., Eisenstein R. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth: structure-function correlations. Biochim Biophys Acta. 1986 Nov 7;874(1):61–71. doi: 10.1016/0167-4838(86)90102-0. [DOI] [PubMed] [Google Scholar]
- Homandberg G. A., Williams J. E., Grant D., Schumacher B., Eisenstein R. Heparin-binding fragments of fibronectin are potent inhibitors of endothelial cell growth. Am J Pathol. 1985 Sep;120(3):327–332. [PMC free article] [PubMed] [Google Scholar]
- Jessen K. R., Mirsky R. Schwann cell precursors and their development. Glia. 1991;4(2):185–194. doi: 10.1002/glia.440040210. [DOI] [PubMed] [Google Scholar]
- Kalderon N. Schwann cell proliferation and localized proteolysis: expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7216–7220. doi: 10.1073/pnas.81.22.7216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keski-Oja J., Sen A., Todaro G. J. Direct association of fibronectin and actin molecules in vitro. J Cell Biol. 1980 Jun;85(3):527–533. doi: 10.1083/jcb.85.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krystosek A., Verrall S., Seeds N. W. Plasminogen activator secretion in relation to Schwann cell activities. Int J Dev Neurosci. 1988;6(5):483–493. doi: 10.1016/0736-5748(88)90054-8. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McDonagh R. P., McDonagh J., Petersen T. E., Thøgersen H. C., Skorstengaard K., Sottrup-Jensen L., Magnusson S., Dell A., Morris H. R. Amino acid sequence of the factor XIIIa acceptor site in bovine plasma fibronectin. FEBS Lett. 1981 May 18;127(2):174–178. doi: 10.1016/0014-5793(81)80198-6. [DOI] [PubMed] [Google Scholar]
- Meador-Woodruff J. H., Lewis B. L., DeVries G. H. Cyclic AMP and calcium as potential mediators of stimulation of cultured Schwann cell proliferation by axolemma-enriched and myelin-enriched membrane fractions. Biochem Biophys Res Commun. 1984 Jul 18;122(1):373–380. doi: 10.1016/0006-291x(84)90485-6. [DOI] [PubMed] [Google Scholar]
- Muir D., Varon S., Manthorpe M. An enzyme-linked immunosorbent assay for bromodeoxyuridine incorporation using fixed microcultures. Anal Biochem. 1990 Mar;185(2):377–382. doi: 10.1016/0003-2697(90)90310-6. [DOI] [PubMed] [Google Scholar]
- Pfeiffer S. E., Wechsler W. Biochemically differentiated neoplastic clone of Schwann cells. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2885–2889. doi: 10.1073/pnas.69.10.2885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter S., Clark M. B., Glaser L., Bunge R. P. Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J Neurosci. 1986 Oct;6(10):3070–3078. doi: 10.1523/JNEUROSCI.06-10-03070.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ratner N., Glaser L., Bunge R. P. PC12 cells as a source of neurite-derived cell surface mitogen, which stimulates Schwann cell division. J Cell Biol. 1984 Mar;98(3):1150–1155. doi: 10.1083/jcb.98.3.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridley A. J., Davis J. B., Stroobant P., Land H. Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol. 1989 Dec;109(6 Pt 2):3419–3424. doi: 10.1083/jcb.109.6.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzer J. L., Bunge R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980 Mar;84(3):739–752. doi: 10.1083/jcb.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salzer J. L., Williams A. K., Glaser L., Bunge R. P. Studies of Schwann cell proliferation. II. Characterization of the stimulation and specificity of the response to a neurite membrane fraction. J Cell Biol. 1980 Mar;84(3):753–766. doi: 10.1083/jcb.84.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Umenishi F., Yasumitsu H., Ashida Y., Yamauti J., Umeda M., Miyazaki K. Purification and properties of extracellular matrix-degrading metallo-proteinase overproduced by Rous sarcoma virus-transformed rat liver cell line, and its identification as transin. J Biochem. 1990 Oct;108(4):537–543. doi: 10.1093/oxfordjournals.jbchem.a123238. [DOI] [PubMed] [Google Scholar]
- Weinmaster G., Lemke G. Cell-specific cyclic AMP-mediated induction of the PDGF receptor. EMBO J. 1990 Mar;9(3):915–920. doi: 10.1002/j.1460-2075.1990.tb08189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilhelm S. M., Collier I. E., Kronberger A., Eisen A. Z., Marmer B. L., Grant G. A., Bauer E. A., Goldberg G. I. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6725–6729. doi: 10.1073/pnas.84.19.6725. [DOI] [PMC free article] [PubMed] [Google Scholar]
