Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jan 2;116(2):367–376. doi: 10.1083/jcb.116.2.367

Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting

PMCID: PMC2289281  PMID: 1530945

Abstract

Acanthamoeba myosin-I bound to substrates of nitrocellulose or planar lipid membranes on glass moved actin filaments at an average velocity of 0.2 micron/s. This movement required ATP and phosphorylation of the myosin-I heavy chain. We prepared planar lipid membranes on a glass support by passive fusion of lipid vesicles (Brian, A. A., and H. M. McConnell. 1984. Proc. Natl. Acad. Sci. USA. 81:6159-6163) composed of phosphatidylcholine and containing 0-40% phosphatidylserine. The mass of lipid that bound to the glass was the same for membranes of 2 and 20% phosphatidylserine in phosphatidylcholine and was sufficient to form a single bilayer. Myosin-I moved actin filaments on planar membranes of 5-40% but not 0-2% phosphatidylserine. At the low concentrations of phosphatidylserine, actin filaments tended to detach suggesting that less myosin-I was bound. We used the cooperative activation of Acanthamoeba myosin-I ATPase by low concentrations of actin to assess the association of phospholipids with myosin-I. Under conditions where activity depends on the binding of actin to the tail of myosin-I (Albanesi, J. P., H. Fujisaki, and E. D. Korn. 1985. J. Biol. Chem. 260:11174-11179), phospholipid vesicles with 5-40% phosphatidylserine inhibited ATPase activity. The motility and ATPase results demonstrate a specific interaction of the tail of myosin-I with physiological concentrations of phosphatidylserine. This interaction is sufficient to support motility and may provide a mechanism to target myosin-I to biological membranes.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Pollard T. D. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature. 1986 Aug 21;322(6081):754–756. doi: 10.1038/322754a0. [DOI] [PubMed] [Google Scholar]
  2. Albanesi J. P., Fujisaki H., Korn E. D. A kinetic model for the molecular basis of the contractile activity of Acanthamoeba myosins IA and IB. J Biol Chem. 1985 Sep 15;260(20):11174–11179. [PubMed] [Google Scholar]
  3. Baines I. C., Korn E. D. Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluorescence and immunogold electron microscopy. J Cell Biol. 1990 Nov;111(5 Pt 1):1895–1904. doi: 10.1083/jcb.111.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berg H. C., Block S. M. A miniature flow cell designed for rapid exchange of media under high-power microscope objectives. J Gen Microbiol. 1984 Nov;130(11):2915–2920. doi: 10.1099/00221287-130-11-2915. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brian A. A., McConnell H. M. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6159–6163. doi: 10.1073/pnas.81.19.6159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brzeska H., Lynch T. J., Korn E. D. Localization of the actin-binding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity. J Biol Chem. 1988 Jan 5;263(1):427–435. [PubMed] [Google Scholar]
  8. Collins K., Sellers J. R., Matsudaira P. Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J Cell Biol. 1990 Apr;110(4):1137–1147. doi: 10.1083/jcb.110.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dabora S. L., Sheetz M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988 Jul 1;54(1):27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  10. De Lozanne A., Spudich J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science. 1987 May 29;236(4805):1086–1091. doi: 10.1126/science.3576222. [DOI] [PubMed] [Google Scholar]
  11. Drenckhahn D., Dermietzel R. Organization of the actin filament cytoskeleton in the intestinal brush border: a quantitative and qualitative immunoelectron microscope study. J Cell Biol. 1988 Sep;107(3):1037–1048. doi: 10.1083/jcb.107.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fath K. R., Obenauf S. D., Burgess D. R. Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes. Development. 1990 Jun;109(2):449–459. doi: 10.1242/dev.109.2.449. [DOI] [PubMed] [Google Scholar]
  13. Fukui Y., Lynch T. J., Brzeska H., Korn E. D. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature. 1989 Sep 28;341(6240):328–331. doi: 10.1038/341328a0. [DOI] [PubMed] [Google Scholar]
  14. Gadasi H., Korn E. D. Evidence for differential intracellular localization of the Acanthamoeba myosin isoenzymes. Nature. 1980 Jul 31;286(5772):452–456. doi: 10.1038/286452a0. [DOI] [PubMed] [Google Scholar]
  15. Glenney J. R., Jr, Osborn M., Weber K. The intracellular localization of the microvillus 110K protein, a component considered to be involved in side-on membrane attachment of F-actin. Exp Cell Res. 1982 Mar;138(1):199–205. doi: 10.1016/0014-4827(82)90106-9. [DOI] [PubMed] [Google Scholar]
  16. Grolig F., Williamson R. E., Parke J., Miller C., Anderton B. H. Myosin and Ca2+-sensitive streaming in the alga Chara: detection of two polypeptides reacting with a monoclonal anti-myosin and their localization in the streaming endoplasm. Eur J Cell Biol. 1988 Oct;47(1):22–31. [PubMed] [Google Scholar]
  17. Hagen S. J., Kiehart D. P., Kaiser D. A., Pollard T. D. Characterization of monoclonal antibodies to Acanthamoeba myosin-I that cross-react with both myosin-II and low molecular mass nuclear proteins. J Cell Biol. 1986 Dec;103(6 Pt 1):2121–2128. doi: 10.1083/jcb.103.6.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayden S. M., Wolenski J. S., Mooseker M. S. Binding of brush border myosin I to phospholipid vesicles. J Cell Biol. 1990 Aug;111(2):443–451. doi: 10.1083/jcb.111.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horowitz J. A., Hammer J. A., 3rd A new Acanthamoeba myosin heavy chain. Cloning of the gene and immunological identification of the polypeptide. J Biol Chem. 1990 Nov 25;265(33):20646–20652. [PubMed] [Google Scholar]
  20. Hoshimaru M., Fujio Y., Sobue K., Sugimoto T., Nakanishi S. Immunochemical evidence that myosin I heavy chain-like protein is identical to the 110-kilodalton brush-border protein. J Biochem. 1989 Sep;106(3):455–459. doi: 10.1093/oxfordjournals.jbchem.a122873. [DOI] [PubMed] [Google Scholar]
  21. Hudspeth A. J. How the ear's works work. Nature. 1989 Oct 5;341(6241):397–404. doi: 10.1038/341397a0. [DOI] [PubMed] [Google Scholar]
  22. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  23. Johnson S. M. The effect of charge and cholesterol on the size and thickness of sonicated phospholipid vesicles. Biochim Biophys Acta. 1973 Apr 25;307(1):27–41. doi: 10.1016/0005-2736(73)90022-9. [DOI] [PubMed] [Google Scholar]
  24. Johnston G. C., Prendergast J. A., Singer R. A. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol. 1991 May;113(3):539–551. doi: 10.1083/jcb.113.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jung G., Korn E. D., Hammer J. A., 3rd The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and non-myosin-like sequences. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6720–6724. doi: 10.1073/pnas.84.19.6720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jung G., Schmidt C. J., Hammer J. A., 3rd Myosin I heavy-chain genes of Acanthamoeba castellanii: cloning of a second gene and evidence for the existence of a third isoform. Gene. 1989 Oct 30;82(2):269–280. doi: 10.1016/0378-1119(89)90052-8. [DOI] [PubMed] [Google Scholar]
  27. Kachar B. Direct visualization of organelle movement along actin filaments dissociated from characean algae. Science. 1985 Mar 15;227(4692):1355–1357. doi: 10.1126/science.4038817. [DOI] [PubMed] [Google Scholar]
  28. Kachar B., Reese T. S. The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol. 1988 May;106(5):1545–1552. doi: 10.1083/jcb.106.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kishino A., Yanagida T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature. 1988 Jul 7;334(6177):74–76. doi: 10.1038/334074a0. [DOI] [PubMed] [Google Scholar]
  30. Knecht D. A., Loomis W. F. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science. 1987 May 29;236(4805):1081–1086. doi: 10.1126/science.3576221. [DOI] [PubMed] [Google Scholar]
  31. Kohno T., Shimmen T. Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol. 1988 May;106(5):1539–1543. doi: 10.1083/jcb.106.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Korn E. D., Hammer J. A., 3rd Myosin I. Curr Opin Cell Biol. 1990 Feb;2(1):57–61. doi: 10.1016/s0955-0674(05)80031-6. [DOI] [PubMed] [Google Scholar]
  33. Kron S. J., Spudich J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6272–6276. doi: 10.1073/pnas.83.17.6272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kron S. J., Toyoshima Y. Y., Uyeda T. Q., Spudich J. A. Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 1991;196:399–416. doi: 10.1016/0076-6879(91)96035-p. [DOI] [PubMed] [Google Scholar]
  35. Lynch T. J., Albanesi J. P., Korn E. D., Robinson E. A., Bowers B., Fujisaki H. ATPase activities and actin-binding properties of subfragments of Acanthamoeba myosin IA. J Biol Chem. 1986 Dec 25;261(36):17156–17162. [PubMed] [Google Scholar]
  36. Lynch T. J., Brzeska H., Baines I. C., Korn E. D. Purification of myosin I and myosin I heavy chain kinase from Acanthamoeba castellanii. Methods Enzymol. 1991;196:12–23. doi: 10.1016/0076-6879(91)96004-b. [DOI] [PubMed] [Google Scholar]
  37. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  38. Mercer J. A., Seperack P. K., Strobel M. C., Copeland N. G., Jenkins N. A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature. 1991 Feb 21;349(6311):709–713. doi: 10.1038/349709a0. [DOI] [PubMed] [Google Scholar]
  39. Miller J. L., Hubbard C. M., Litman B. J., Macdonald T. L. Inhibition of transducin activation and guanosine triphosphatase activity by aluminum ion. J Biol Chem. 1989 Jan 5;264(1):243–250. [PubMed] [Google Scholar]
  40. Miyata H., Bowers B., Korn E. D. Plasma membrane association of Acanthamoeba myosin I. J Cell Biol. 1989 Oct;109(4 Pt 1):1519–1528. doi: 10.1083/jcb.109.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mooseker M. S., Coleman T. R. The 110-kD protein-calmodulin complex of the intestinal microvillus (brush border myosin I) is a mechanoenzyme. J Cell Biol. 1989 Jun;108(6):2395–2400. doi: 10.1083/jcb.108.6.2395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mooseker M. S., Conzelman K. A., Coleman T. R., Heuser J. E., Sheetz M. P. Characterization of intestinal microvillar membrane disks: detergent-resistant membrane sheets enriched in associated brush border myosin I (110K-calmodulin). J Cell Biol. 1989 Sep;109(3):1153–1161. doi: 10.1083/jcb.109.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Poglitsch C. L., Thompson N. L. Interaction of antibodies with Fc receptors in substrate-supported planar membranes measured by total internal reflection fluorescence microscopy. Biochemistry. 1990 Jan 9;29(1):248–254. doi: 10.1021/bi00453a033. [DOI] [PubMed] [Google Scholar]
  44. Pollard T. D. Assays for myosin. Methods Enzymol. 1982;85(Pt B):123–130. doi: 10.1016/0076-6879(82)85015-5. [DOI] [PubMed] [Google Scholar]
  45. Pollard T. D., Doberstein S. K., Zot H. G. Myosin-I. Annu Rev Physiol. 1991;53:653–681. doi: 10.1146/annurev.ph.53.030191.003253. [DOI] [PubMed] [Google Scholar]
  46. Pollard T. D., Korn E. D. Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity. J Biol Chem. 1973 Jul 10;248(13):4691–4697. [PubMed] [Google Scholar]
  47. Prochniewicz E., Yanagida T. Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility. J Mol Biol. 1990 Dec 5;216(3):761–772. doi: 10.1016/0022-2836(90)90397-5. [DOI] [PubMed] [Google Scholar]
  48. Schliwa M., Shimizu T., Vale R. D., Euteneuer U. Nucleotide specificities of anterograde and retrograde organelle transport in Reticulomyxa are indistinguishable. J Cell Biol. 1991 Mar;112(6):1199–1203. doi: 10.1083/jcb.112.6.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schnapp B. J., Reese T. S. Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1548–1552. doi: 10.1073/pnas.86.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Schroer T. A., Schnapp B. J., Reese T. S., Sheetz M. P. The role of kinesin and other soluble factors in organelle movement along microtubules. J Cell Biol. 1988 Nov;107(5):1785–1792. doi: 10.1083/jcb.107.5.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schroer T. A., Steuer E. R., Sheetz M. P. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell. 1989 Mar 24;56(6):937–946. doi: 10.1016/0092-8674(89)90627-2. [DOI] [PubMed] [Google Scholar]
  52. Sellers J. R., Kachar B. Polarity and velocity of sliding filaments: control of direction by actin and of speed by myosin. Science. 1990 Jul 27;249(4967):406–408. doi: 10.1126/science.2377894. [DOI] [PubMed] [Google Scholar]
  53. Sheetz M. P., Baumrind N. L., Wayne D. B., Pearlman A. L. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell. 1990 Apr 20;61(2):231–241. doi: 10.1016/0092-8674(90)90804-n. [DOI] [PubMed] [Google Scholar]
  54. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  55. Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
  56. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  57. Titus M. A., Warrick H. M., Spudich J. A. Multiple actin-based motor genes in Dictyostelium. Cell Regul. 1989 Nov;1(1):55–63. doi: 10.1091/mbc.1.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Toyoshima Y. Y., Kron S. J., McNally E. M., Niebling K. R., Toyoshima C., Spudich J. A. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature. 1987 Aug 6;328(6130):536–539. doi: 10.1038/328536a0. [DOI] [PubMed] [Google Scholar]
  59. Ulsamer A. G., Wright P. L., Wetzel M. G., Korn E. D. Plasma and phagosome membranes of Acanthamoeba castellanii. J Cell Biol. 1971 Oct;51(1):193–215. doi: 10.1083/jcb.51.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Umemoto S., Sellers J. R. Characterization of in vitro motility assays using smooth muscle and cytoplasmic myosins. J Biol Chem. 1990 Sep 5;265(25):14864–14869. [PubMed] [Google Scholar]
  61. Vale R. D., Hotani H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J Cell Biol. 1988 Dec;107(6 Pt 1):2233–2241. doi: 10.1083/jcb.107.6.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Warshaw D. M., Desrosiers J. M., Work S. S., Trybus K. M. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol. 1990 Aug;111(2):453–463. doi: 10.1083/jcb.111.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yamada A., Ishii N., Takahashi K. Direction and speed of actin filaments moving along thick filaments isolated from molluscan smooth muscle. J Biochem. 1990 Sep;108(3):341–343. doi: 10.1093/oxfordjournals.jbchem.a123203. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES