Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jan 2;116(2):465–476. doi: 10.1083/jcb.116.2.465

Inhibition of cell adhesion by high molecular weight kininogen

PMCID: PMC2289283  PMID: 1370494

Abstract

An anti-cell adhesion globulin was purified from human plasma by heparin-affinity chromatography. The purified globulin inhibited spreading of osteosarcoma and melanoma cells on vitronectin, and of endothelial cells, platelets, and mononuclear blood cells on vitronectin or fibrinogen. It did not inhibit cell spreading on fibronectin. The protein had the strongest antiadhesive effect when preadsorbed onto the otherwise adhesive surfaces. Amino acid sequence analysis revealed that the globulin is cleaved (kinin-free) high molecular weight kininogen (HKa). Globulin fractions from normal plasma immunodepleted of high molecular weight kininogen (HK) or from an individual deficient of HK lacked adhesive activity. Uncleaved single- chain HK preadsorbed at neutral pH, HKa preadsorbed at pH greater than 8.0, and HKa degraded further to release its histidine-rich domain had little anti-adhesive activity. These results indicate that the cationic histidine-rich domain is critical for anti-adhesive activity and is somehow mobilized upon cleavage. Vitronectin was not displaced from the surface by HKa. Thus, cleavage of HK by kallikrein results in both release of bradykinin, a potent vasoactive and growth-promoting peptide, and formation of a potent anti-adhesive protein.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. P., Heath E. C. The relationship between rat major acute phase protein and the kininogens. J Biol Chem. 1985 Oct 5;260(22):12065–12071. [PubMed] [Google Scholar]
  2. Bale M. D., Wohlfahrt L. A., Mosher D. F., Tomasini B., Sutton R. C. Identification of vitronectin as a major plasma protein adsorbed on polymer surfaces of different copolymer composition. Blood. 1989 Dec;74(8):2698–2706. [PubMed] [Google Scholar]
  3. Brash J. L., Scott C. F., ten Hove P., Wojciechowski P., Colman R. W. Mechanism of transient adsorption of fibrinogen from plasma to solid surfaces: role of the contact and fibrinolytic systems. Blood. 1988 Apr;71(4):932–939. [PubMed] [Google Scholar]
  4. Chiquet-Ehrismann R., Kalla P., Pearson C. A., Beck K., Chiquet M. Tenascin interferes with fibronectin action. Cell. 1988 May 6;53(3):383–390. doi: 10.1016/0092-8674(88)90158-4. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  6. Dahlbäck B., Podack E. R. Characterization of human S protein, an inhibitor of the membrane attack complex of complement. Demonstration of a free reactive thiol group. Biochemistry. 1985 Apr 23;24(9):2368–2374. doi: 10.1021/bi00330a036. [DOI] [PubMed] [Google Scholar]
  7. Edwards J. G., Robson R. T., Campbell G. A major difference between serum and fibronectin in the divalent cation requirement for adhesion and spreading of BHK21 cells. J Cell Sci. 1987 Jun;87(Pt 5):657–665. doi: 10.1242/jcs.87.5.657. [DOI] [PubMed] [Google Scholar]
  8. Evans P. M., Jones B. M. Mn2+-stimulated adhesion and spreading of Ehrlich ascites cells are separate processes. Cell Biol Int Rep. 1982 Jul;6(7):681–685. doi: 10.1016/0309-1651(82)90137-0. [DOI] [PubMed] [Google Scholar]
  9. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  10. Fujikawa K., Heimark R. L., Kurachi K., Davie E. W. Activation of bovine factor XII (Hageman factor) by plasma kallikrein. Biochemistry. 1980 Apr 1;19(7):1322–1330. doi: 10.1021/bi00548a010. [DOI] [PubMed] [Google Scholar]
  11. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  12. Furuto-Kato S., Matsumoto A., Kitamura N., Nakanishi S. Primary structures of the mRNAs encoding the rat precursors for bradykinin and T-kinin. Structural relationship of kininogens with major acute phase protein and alpha 1-cysteine proteinase inhibitor. J Biol Chem. 1985 Oct 5;260(22):12054–12059. [PubMed] [Google Scholar]
  13. Gailit J., Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem. 1988 Sep 15;263(26):12927–12932. [PubMed] [Google Scholar]
  14. Gimbrone M. A., Jr, Obin M. S., Brock A. F., Luis E. A., Hass P. E., Hébert C. A., Yip Y. K., Leung D. W., Lowe D. G., Kohr W. J. Endothelial interleukin-8: a novel inhibitor of leukocyte-endothelial interactions. Science. 1989 Dec 22;246(4937):1601–1603. doi: 10.1126/science.2688092. [DOI] [PubMed] [Google Scholar]
  15. Greengard J. S., Griffin J. H. Receptors for high molecular weight kininogen on stimulated washed human platelets. Biochemistry. 1984 Dec 18;23(26):6863–6869. doi: 10.1021/bi00321a090. [DOI] [PubMed] [Google Scholar]
  16. Grinnell F. Cell spreading factor. Occurrence and specificity of action. Exp Cell Res. 1976 Oct 1;102(1):51–62. doi: 10.1016/0014-4827(76)90298-6. [DOI] [PubMed] [Google Scholar]
  17. Grinnell F. Manganese-dependent cell-substratum adhesion. J Cell Sci. 1984 Jan;65:61–72. doi: 10.1242/jcs.65.1.61. [DOI] [PubMed] [Google Scholar]
  18. Gustafson E. J., Lukasiewicz H., Wachtfogel Y. T., Norton K. J., Schmaier A. H., Niewiarowski S., Colman R. W. High molecular weight kininogen inhibits fibrinogen binding to cytoadhesins of neutrophils and platelets. J Cell Biol. 1989 Jul;109(1):377–387. doi: 10.1083/jcb.109.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gustafson E. J., Schmaier A. H., Wachtfogel Y. T., Kaufman N., Kucich U., Colman R. W. Human neutrophils contain and bind high molecular weight kininogen. J Clin Invest. 1989 Jul;84(1):28–35. doi: 10.1172/JCI114151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gustafson E. J., Schutsky D., Knight L. C., Schmaier A. H. High molecular weight kininogen binds to unstimulated platelets. J Clin Invest. 1986 Jul;78(1):310–318. doi: 10.1172/JCI112567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Han Y. N., Kato H., Iwanaga S., Komiya M. Actions of urinary kallikrein, plasmin, and other kininogenases on bovine plasma high-molecular-weight kininogen. J Biochem. 1978 Jan;83(1):223–235. doi: 10.1093/oxfordjournals.jbchem.a131895. [DOI] [PubMed] [Google Scholar]
  22. Heimark R. L., Kurachi K., Fujikawa K., Davie E. W. Surface activation of blood coagulation, fibrinolysis and kinin formation. Nature. 1980 Jul 31;286(5772):456–460. doi: 10.1038/286456a0. [DOI] [PubMed] [Google Scholar]
  23. Heino J., Massagué J. Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem. 1989 Dec 25;264(36):21806–21811. [PubMed] [Google Scholar]
  24. Hemler M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400. doi: 10.1146/annurev.iy.08.040190.002053. [DOI] [PubMed] [Google Scholar]
  25. Higashiyama S., Ohkubo I., Ishiguro H., Kunimatsu M., Sawaki K., Sasaki M. Human high molecular weight kininogen as a thiol proteinase inhibitor: presence of the entire inhibition capacity in the native form of heavy chain. Biochemistry. 1986 Apr 8;25(7):1669–1675. doi: 10.1021/bi00355a034. [DOI] [PubMed] [Google Scholar]
  26. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  27. Ishiguro H., Higashiyama S., Ohkubo I., Sasaki M. Mapping of functional domains of human high molecular weight and low molecular weight kininogens using murine monoclonal antibodies. Biochemistry. 1987 Nov 3;26(22):7021–7029. doi: 10.1021/bi00396a025. [DOI] [PubMed] [Google Scholar]
  28. Kageyama R., Kitamura N., Ohkubo H., Nakanishi S. Differential expression of the multiple forms of rat prekininogen mRNAs after acute inflammation. J Biol Chem. 1985 Oct 5;260(22):12060–12064. [PubMed] [Google Scholar]
  29. Kato H., Nagasawa S., Iwanaga S. HMW and LMW kininogens. Methods Enzymol. 1981;80(Pt 100):172–198. doi: 10.1016/s0076-6879(81)80017-1. [DOI] [PubMed] [Google Scholar]
  30. Kellermann J., Haupt H., Auerswald E. A., Müller-Ester W. The arrangement of disulfide loops in human alpha 2-HS glycoprotein. Similarity to the disulfide bridge structures of cystatins and kininogens. J Biol Chem. 1989 Aug 25;264(24):14121–14128. [PubMed] [Google Scholar]
  31. Kellermann J., Lottspeich F., Henschen A., Müller-Esterl W. Completion of the primary structure of human high-molecular-mass kininogen. The amino acid sequence of the entire heavy chain and evidence for its evolution by gene triplication. Eur J Biochem. 1986 Jan 15;154(2):471–478. doi: 10.1111/j.1432-1033.1986.tb09421.x. [DOI] [PubMed] [Google Scholar]
  32. Lahav J. Thrombospondin inhibits adhesion of endothelial cells. Exp Cell Res. 1988 Jul;177(1):199–204. doi: 10.1016/0014-4827(88)90037-7. [DOI] [PubMed] [Google Scholar]
  33. Laurell C. B. Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem. 1966 Apr;15(1):45–52. doi: 10.1016/0003-2697(66)90246-6. [DOI] [PubMed] [Google Scholar]
  34. Lotz M. M., Burdsal C. A., Erickson H. P., McClay D. R. Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol. 1989 Oct;109(4 Pt 1):1795–1805. doi: 10.1083/jcb.109.4.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lämmle B., Wuillemin W. A., Huber I., Krauskopf M., Zürcher C., Pflugshaupt R., Furlan M. Thromboembolism and bleeding tendency in congenital factor XII deficiency--a study on 74 subjects from 14 Swiss families. Thromb Haemost. 1991 Feb 12;65(2):117–121. [PubMed] [Google Scholar]
  36. Mandle R. J., Colman R. W., Kaplan A. P. Identification of prekallikrein and high-molecular-weight kininogen as a complex in human plasma. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4179–4183. doi: 10.1073/pnas.73.11.4179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Meloni F. J., Schmaier A. H. Low molecular weight kininogen binds to platelets to modulate thrombin-induced platelet activation. J Biol Chem. 1991 Apr 15;266(11):6786–6794. [PubMed] [Google Scholar]
  38. Mosher D. F., Blout E. R. Heterogeneity of bovine fibrinogen and fibrin. J Biol Chem. 1973 Oct 10;248(19):6896–6903. [PubMed] [Google Scholar]
  39. Mosher D. F., Johnson R. B. In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem. 1983 May 25;258(10):6595–6601. [PubMed] [Google Scholar]
  40. Murphy-Ullrich J. E., Hök M. Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol. 1989 Sep;109(3):1309–1319. doi: 10.1083/jcb.109.3.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Murphy-Ullrich J. E., Mosher D. F. Localization of thrombospondin in clots formed in situ. Blood. 1985 Nov;66(5):1098–1104. [PubMed] [Google Scholar]
  42. Myllylä G., Häyry P., Penttinen K., Saxén E. Serum lipoproteins in primary cell attachment and growth behaviour of cells on glass. Ann Med Exp Biol Fenn. 1966;44(2):171–176. [PubMed] [Google Scholar]
  43. Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry. 1984 Nov 20;23(24):5691–5697. doi: 10.1021/bi00319a005. [DOI] [PubMed] [Google Scholar]
  44. Ohkubo I., Namikawa C., Higashiyama S., Sasaki M., Minowa O., Mizuno Y., Shiokawa H. Purification and characterization of alpha 1-thiol proteinase inhibitor and its identity with kinin- and fragment 1.2-free high molecular weight kininogen. Int J Biochem. 1988;20(3):243–258. doi: 10.1016/0020-711x(88)90348-5. [DOI] [PubMed] [Google Scholar]
  45. Olmsted J. B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem. 1981 Dec 10;256(23):11955–11957. [PubMed] [Google Scholar]
  46. Owen N. E., Villereal M. L. Lys-bradykinin stimulates Na+ influx and DNA synthesis in cultured human fibroblasts. Cell. 1983 Mar;32(3):979–985. doi: 10.1016/0092-8674(83)90082-x. [DOI] [PubMed] [Google Scholar]
  47. Preissner K. T., Wassmuth R., Müller-Berghaus G. Physicochemical characterization of human S-protein and its function in the blood coagulation system. Biochem J. 1985 Oct 15;231(2):349–355. doi: 10.1042/bj2310349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Proud D., Pierce J. V., Pisano J. J. Radioimmunoassay of human high molecular weight kininogen in normal and deficient plasmas. J Lab Clin Med. 1980 Apr;95(4):563–574. [PubMed] [Google Scholar]
  49. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  51. ROCHA E SILVA M., BERALDO W. T., ROSENFELD G. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am J Physiol. 1949 Feb;156(2):261–273. doi: 10.1152/ajplegacy.1949.156.2.261. [DOI] [PubMed] [Google Scholar]
  52. Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
  53. Sage H., Vernon R. B., Funk S. E., Everitt E. A., Angello J. SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. J Cell Biol. 1989 Jul;109(1):341–356. doi: 10.1083/jcb.109.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Santoro S. A. Identification of a 160,000 dalton platelet membrane protein that mediates the initial divalent cation-dependent adhesion of platelets to collagen. Cell. 1986 Sep 12;46(6):913–920. doi: 10.1016/0092-8674(86)90073-5. [DOI] [PubMed] [Google Scholar]
  55. Schafer A. I., Maas A. K., Ware J. A., Johnson P. C., Rittenhouse S. E., Salzman E. W. Platelet protein phosphorylation, elevation of cytosolic calcium, and inositol phospholipid breakdown in platelet activation induced by plasmin. J Clin Invest. 1986 Jul;78(1):73–79. doi: 10.1172/JCI112576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schiffman S., Lee P. Partial purification and characterization of contact activation cofactor. J Clin Invest. 1975 Nov;56(5):1082–1092. doi: 10.1172/JCI108182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Schmaier A. H., Kuo A., Lundberg D., Murray S., Cines D. B. The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem. 1988 Nov 5;263(31):16327–16333. [PubMed] [Google Scholar]
  58. Schmaier A. H., Silver L., Adams A. L., Fischer G. C., Munoz P. C., Vroman L., Colman R. W. The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb Res. 1984 Jan 1;33(1):51–67. doi: 10.1016/0049-3848(84)90154-3. [DOI] [PubMed] [Google Scholar]
  59. Schmaier A. H., Zuckerberg A., Silverman C., Kuchibhotla J., Tuszynski G. P., Colman R. W. High-molecular weight kininogen. A secreted platelet protein. J Clin Invest. 1983 May;71(5):1477–1489. doi: 10.1172/JCI110901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Scott C. F., Silver L. D., Purdon A. D., Colman R. W. Cleavage of human high molecular weight kininogen by factor XIa in vitro. Effect on structure and function. J Biol Chem. 1985 Sep 5;260(19):10856–10863. [PubMed] [Google Scholar]
  61. Scott C. F., Silver L. D., Schapira M., Colman R. W. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor. J Clin Invest. 1984 Apr;73(4):954–962. doi: 10.1172/JCI111319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Smith R. P., Higuchi D. A., Broze G. J., Jr Platelet coagulation factor XIa-inhibitor, a form of Alzheimer amyloid precursor protein. Science. 1990 Jun 1;248(4959):1126–1128. doi: 10.1126/science.2111585. [DOI] [PubMed] [Google Scholar]
  63. Spring J., Beck K., Chiquet-Ehrismann R. Two contrary functions of tenascin: dissection of the active sites by recombinant tenascin fragments. Cell. 1989 Oct 20;59(2):325–334. doi: 10.1016/0092-8674(89)90294-8. [DOI] [PubMed] [Google Scholar]
  64. Sueyoshi T., Enjyoji K., Shimada T., Kato H., Iwanaga S., Bando Y., Kominami E., Katunuma N. A new function of kininogens as thiol-proteinase inhibitors: inhibition of papain and cathepsins B, H and L by bovine, rat and human plasma kininogens. FEBS Lett. 1985 Mar 11;182(1):193–195. doi: 10.1016/0014-5793(85)81182-0. [DOI] [PubMed] [Google Scholar]
  65. Tait J. F., Fujikawa K. Identification of the binding site for plasma prekallikrein in human high molecular weight kininogen. A region from residues 185 to 224 of the kininogen light chain retains full binding activity. J Biol Chem. 1986 Nov 25;261(33):15396–15401. [PubMed] [Google Scholar]
  66. Takagaki Y., Kitamura N., Nakanishi S. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. Primary structures of two human prekininogens. J Biol Chem. 1985 Jul 15;260(14):8601–8609. [PubMed] [Google Scholar]
  67. Thompson R. E., Mandle R., Jr, Kaplan A. P. Association of factor XI and high molecular weight kininogen in human plasma. J Clin Invest. 1977 Dec;60(6):1376–1380. doi: 10.1172/JCI108898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Vroman L., Adams A. L., Fischer G. C., Munoz P. C. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980 Jan;55(1):156–159. [PubMed] [Google Scholar]
  69. van Mourik J. A., Mochtar I. A. Purification of human antihemophilic factor (factor VIII) by gel chromatography. Biochim Biophys Acta. 1970 Dec 22;221(3):677–679. doi: 10.1016/0005-2795(70)90247-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES