Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jan 2;116(2):423–435. doi: 10.1083/jcb.116.2.423

The HB-6, CDw75, and CD76 differentiation antigens are unique cell- surface carbohydrate determinants generated by the beta-galactoside alpha 2,6-sialyltransferase

PMCID: PMC2289289  PMID: 1730763

Abstract

Expression of the beta-galactoside alpha 2,6-sialyltransferase (alpha 2,6-ST) was shown to regulate the generation of multiple cell-surface differentiation antigens (Ags) that may be necessary for lymphocyte function. A new mAb was produced, termed HB-6, that was shown to identify a novel neuraminidase-sensitive cell-surface Ag expressed by subpopulations of human lymphocytes and erythrocytes. In attempting to isolate a cDNA encoding the HB-6 antigen by expression cloning, a cDNA encoding the alpha 2,6-ST (EC 2.4.99.1) was obtained. Since expression of the alpha 2,6-ST protein was shown to be limited to the Golgi apparatus, the cell-surface HB-6 Ag was demonstrated to be the product of alpha 2,6-ST activity. Interestingly, alpha 2,6-ST expression also generated two other neuraminidase-sensitive lymphocyte cell-surface differentiation Ags, CDw75, and CD76. The HB-6, CDw75, and CD76 mAb identified distinct Ags that were differentially expressed by different B cell lines and exhibited different patterns of expression in tissue sections. These results indicate that alpha 2,6-ST expression is a critical regulatory step in the formation of the Ags that are recognized by these mAb, and that an alpha 2,6-linked sialic acid residue is an essential component of each Ag. Thus, expression of a single ST can result in the generation of multiple distinct antigenic determinants on the cell surface which can be distinguished by mAb and may have regulatory roles in lymphocyte function.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981 Sep;127(3):1024–1029. [PubMed] [Google Scholar]
  2. Basu S. K., Whisler R. L., Yates A. J. Effects of lectin activation on sialyltransferase activities in human lymphocytes. Biochemistry. 1986 May 6;25(9):2577–2581. doi: 10.1021/bi00357a044. [DOI] [PubMed] [Google Scholar]
  3. Boyd A. W., Anderson K. C., Freedman A. S., Fisher D. C., Slaughenhoupt B., Schlossman S. F., Nadler L. M. Studies of in vitro activation and differentiation of human B lymphocytes. I. Phenotypic and functional characterization of the B cell population responding to anti-Ig antibody. J Immunol. 1985 Mar;134(3):1516–1523. [PubMed] [Google Scholar]
  4. Colley K. J., Lee E. U., Adler B., Browne J. K., Paulson J. C. Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J Biol Chem. 1989 Oct 25;264(30):17619–17622. [PubMed] [Google Scholar]
  5. Corral L., Singer M. S., Macher B. A., Rosen S. D. Requirement for sialic acid on neutrophils in a GMP-140 (PADGEM) mediated adhesive interaction with activated platelets. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1349–1356. doi: 10.1016/0006-291x(90)91598-m. [DOI] [PubMed] [Google Scholar]
  6. Cowing C., Chapdelaine J. M. T cells discriminate between Ia antigens expressed on allogeneic accessory cells and B cells: a potential function for carbohydrate side chains on Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6000–6004. doi: 10.1073/pnas.80.19.6000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Despont J. P., Abel C. A., Grey H. M. Sialic acids and sialyltransferases in murine lymphoid cells: indicators of T cell maturation. Cell Immunol. 1975 Jun;17(2):487–494. doi: 10.1016/s0008-8749(75)80052-9. [DOI] [PubMed] [Google Scholar]
  8. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J Biol Chem. 1988 Jul 15;263(20):9557–9560. [PubMed] [Google Scholar]
  10. Epstein A. L., Marder R. J., Winter J. N., Fox R. I. Two new monoclonal antibodies (LN-1, LN-2) reactive in B5 formalin-fixed, paraffin-embedded tissues with follicular center and mantle zone human B lymphocytes and derived tumors. J Immunol. 1984 Aug;133(2):1028–1036. [PubMed] [Google Scholar]
  11. Ernst L. K., Rajan V. P., Larsen R. D., Ruff M. M., Lowe J. B. Stable expression of blood group H determinants and GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase in mouse cells after transfection with human DNA. J Biol Chem. 1989 Feb 25;264(6):3436–3447. [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  13. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freedman A. S., Freeman G., Horowitz J. C., Daley J., Nadler L. M. B7, a B-cell-restricted antigen that identifies preactivated B cells. J Immunol. 1987 Nov 15;139(10):3260–3267. [PubMed] [Google Scholar]
  15. Freeman G. J., Freedman A. S., Segil J. M., Lee G., Whitman J. F., Nadler L. M. B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol. 1989 Oct 15;143(8):2714–2722. [PubMed] [Google Scholar]
  16. Frohman M., Cowing C. Presentation of antigen by B cells: functional dependence on radiation dose, interleukins, cellular activation, and differential glycosylation. J Immunol. 1985 Apr;134(4):2269–2275. [PubMed] [Google Scholar]
  17. Goelz S. E., Hession C., Goff D., Griffiths B., Tizard R., Newman B., Chi-Rosso G., Lobb R. ELFT: a gene that directs the expression of an ELAM-1 ligand. Cell. 1990 Dec 21;63(6):1349–1356. doi: 10.1016/0092-8674(90)90430-m. [DOI] [PubMed] [Google Scholar]
  18. Grundmann U., Nerlich C., Rein T., Zettlmeissl G. Complete cDNA sequence encoding human beta-galactoside alpha-2,6-sialyltransferase. Nucleic Acids Res. 1990 Feb 11;18(3):667–667. doi: 10.1093/nar/18.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hakomori S. Tumor-associated carbohydrate antigens. Annu Rev Immunol. 1984;2:103–126. doi: 10.1146/annurev.iy.02.040184.000535. [DOI] [PubMed] [Google Scholar]
  20. Hanjan S. N., Kearney J. F., Cooper M. D. A monoclonal antibody (MMA) that identifies a differentiation antigen on human myelomonocytic cells. Clin Immunol Immunopathol. 1982 May;23(2):172–188. doi: 10.1016/0090-1229(82)90106-4. [DOI] [PubMed] [Google Scholar]
  21. Hart G. W. Biosynthesis of glycosaminoglycans by thymic lymphocytes. Effects of mitogenic activation. Biochemistry. 1982 Nov 23;21(24):6088–6096. doi: 10.1021/bi00267a010. [DOI] [PubMed] [Google Scholar]
  22. Higgs J. B., Zeldes W., Kozarsky K., Schteingart M., Kan L., Bohlke P., Krieger K., Davis W., Fox D. A. A novel pathway of human T lymphocyte activation. Identification by a monoclonal antibody generated against a rheumatoid synovial T cell line. J Immunol. 1988 Jun 1;140(11):3758–3765. [PubMed] [Google Scholar]
  23. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  24. Kniep B., Mühlradt P. F., Dörken B., Moldenhauer G., Vilella R., Schwartz-Albiez R. Monoclonal antibodies against the human lymphocyte differentiation antigen CD 76 bind to gangliosides. FEBS Lett. 1990 Feb 26;261(2):347–349. doi: 10.1016/0014-5793(90)80588-a. [DOI] [PubMed] [Google Scholar]
  25. Knowles D. M., 2nd, Tolidjian B., Marboe C. C., Mittler R. S., Talle M. A., Goldstein G. Distribution of antigens defined by OKB monoclonal antibodies on benign and malignant lymphoid cells and on nonlymphoid tissues. Blood. 1984 Apr;63(4):886–896. [PubMed] [Google Scholar]
  26. Kukowska-Latallo J. F., Larsen R. D., Nair R. P., Lowe J. B. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group alpha(1,3/1,4)fucosyltransferase. Genes Dev. 1990 Aug;4(8):1288–1303. doi: 10.1101/gad.4.8.1288. [DOI] [PubMed] [Google Scholar]
  27. Kumar R., Yang J., Larsen R. D., Stanley P. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9948–9952. doi: 10.1073/pnas.87.24.9948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lance P., Lau K. M., Lau J. T. Isolation and characterization of a partial cDNA for a human sialyltransferase. Biochem Biophys Res Commun. 1989 Oct 16;164(1):225–232. doi: 10.1016/0006-291x(89)91706-3. [DOI] [PubMed] [Google Scholar]
  29. Lee E. U., Roth J., Paulson J. C. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2,6-sialyltransferase. J Biol Chem. 1989 Aug 15;264(23):13848–13855. [PubMed] [Google Scholar]
  30. Lokhorst H. M., Boom S. E., Bast B. J., Peters P. J., Tedder T. F., Gerdes J., Petersen E., Ballieux R. E. Novel type of proliferating lymphoplasmacytoid cell with a characteristic spotted immunofluorescence pattern. J Clin Invest. 1987 May;79(5):1401–1411. doi: 10.1172/JCI112968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Martorell J., Rojo I., Vilella R., Martinez-Caceres E., Vives J. CD27 induction on thymocytes. J Immunol. 1990 Sep 1;145(5):1356–1363. [PubMed] [Google Scholar]
  32. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meuer S. C., Hussey R. E., Fabbi M., Fox D., Acuto O., Fitzgerald K. A., Hodgdon J. C., Protentis J. P., Schlossman S. F., Reinherz E. L. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell. 1984 Apr;36(4):897–906. doi: 10.1016/0092-8674(84)90039-4. [DOI] [PubMed] [Google Scholar]
  34. Mittler R. S., Talle M. A., Carpenter K., Rao P. E., Goldstein G. Generation and characterization of monoclonal antibodies reactive with human B lymphocytes. J Immunol. 1983 Oct;131(4):1754–1761. [PubMed] [Google Scholar]
  35. Okon E., Felder B., Epstein A., Lukes R. J., Taylor C. R. Monoclonal antibodies reactive with B-lymphocytes and histiocytes in paraffin sections. Cancer. 1985 Jul 1;56(1):95–104. doi: 10.1002/1097-0142(19850701)56:1<95::aid-cncr2820560116>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  36. Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem. 1989 Oct 25;264(30):17615–17618. [PubMed] [Google Scholar]
  37. Pellegrino M. A., Ferrone S., Dierich M. P., Reisfeld R. A. Enhancement of sheep red blood cell human lymphocyte rosette formation by the sulfhydryl compound 2-amino ethylisothiouronium bromide. Clin Immunol Immunopathol. 1975 Jan;3(3):324–333. doi: 10.1016/0090-1229(75)90019-7. [DOI] [PubMed] [Google Scholar]
  38. Powell L. D., Whiteheart S. W., Hart G. W. Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction. J Immunol. 1987 Jul 1;139(1):262–270. [PubMed] [Google Scholar]
  39. Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
  40. Rice G. E., Munro J. M., Corless C., Bevilacqua M. P. Vascular and nonvascular expression of INCAM-110. A target for mononuclear leukocyte adhesion in normal and inflamed human tissues. Am J Pathol. 1991 Feb;138(2):385–393. [PMC free article] [PubMed] [Google Scholar]
  41. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  44. Seed B., Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987 May;84(10):3365–3369. doi: 10.1073/pnas.84.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sleasman J. W., Morimoto C., Schlossman S. F., Tedder T. F. The role of functionally distinct helper T lymphocyte subpopulations in the induction of human B cell differentiation. Eur J Immunol. 1990 Jun;20(6):1357–1366. doi: 10.1002/eji.1830200623. [DOI] [PubMed] [Google Scholar]
  46. Smeland E., Funderud S., Ruud E., Kiil Blomhoff H., Godal T. Characterization of two murine monoclonal antibodies reactive with human B cells. Their use in a high-yield, high-purity method for isolation of B cells and utilization of such cells in an assay for B-cell stimulating factor. Scand J Immunol. 1985 Mar;21(3):205–214. doi: 10.1111/j.1365-3083.1985.tb01422.x. [DOI] [PubMed] [Google Scholar]
  47. Stamenkovic I., Asheim H. C., Deggerdal A., Blomhoff H. K., Smeland E. B., Funderud S. The B cell antigen CD75 is a cell surface sialytransferase. J Exp Med. 1990 Aug 1;172(2):641–643. doi: 10.1084/jem.172.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Svensson E. C., Soreghan B., Paulson J. C. Organization of the beta-galactoside alpha 2,6-sialyltransferase gene. Evidence for the transcriptional regulation of terminal glycosylation. J Biol Chem. 1990 Dec 5;265(34):20863–20868. [PubMed] [Google Scholar]
  49. Tedder T. F., Clement L. T., Cooper M. D. Discontinuous expression of a membrane antigen (HB-7) during B lymphocyte differentiation. Tissue Antigens. 1984 Sep;24(3):140–149. doi: 10.1111/j.1399-0039.1984.tb02118.x. [DOI] [PubMed] [Google Scholar]
  50. Tedder T. F., Clement L. T., Cooper M. D. Human lymphocyte differentiation antigens HB-10 and HB-11. I. Ontogeny of antigen expression. J Immunol. 1985 May;134(5):2983–2988. [PubMed] [Google Scholar]
  51. Tedder T. F., Isaacs C. M. Isolation of cDNAs encoding the CD19 antigen of human and mouse B lymphocytes. A new member of the immunoglobulin superfamily. J Immunol. 1989 Jul 15;143(2):712–717. [PubMed] [Google Scholar]
  52. Tedder T. F., Streuli M., Schlossman S. F., Saito H. Isolation and structure of a cDNA encoding the B1 (CD20) cell-surface antigen of human B lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(1):208–212. doi: 10.1073/pnas.85.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  54. Toporowicz A., Reisner Y. Changes in sialyltransferase activity during murine T cell differentiation. Cell Immunol. 1986 Jun;100(1):10–19. doi: 10.1016/0008-8749(86)90002-x. [DOI] [PubMed] [Google Scholar]
  55. True D. D., Singer M. S., Lasky L. A., Rosen S. D. Requirement for sialic acid on the endothelial ligand of a lymphocyte homing receptor. J Cell Biol. 1990 Dec;111(6 Pt 1):2757–2764. doi: 10.1083/jcb.111.6.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Warren L., Buck C. A., Tuszynski G. P. Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior. Biochim Biophys Acta. 1978 Sep 18;516(1):97–127. doi: 10.1016/0304-419x(78)90005-7. [DOI] [PubMed] [Google Scholar]
  58. Weinstein J., Lee E. U., McEntee K., Lai P. H., Paulson J. C. Primary structure of beta-galactoside alpha 2,6-sialyltransferase. Conversion of membrane-bound enzyme to soluble forms by cleavage of the NH2-terminal signal anchor. J Biol Chem. 1987 Dec 25;262(36):17735–17743. [PubMed] [Google Scholar]
  59. Whiteheart S. W., McLenithan J. C., Hart G. W. Surfaces of murine lymphocyte subsets differ in sialylation states and antigen distribution of a major N-linked penultimate saccharide structure. Cell Immunol. 1990 Feb;125(2):337–353. doi: 10.1016/0008-8749(90)90089-a. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES