Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jan 2;116(2):395–403. doi: 10.1083/jcb.116.2.395

Myelin sheath survival after guanethidine-induced axonal degeneration

PMCID: PMC2289291  PMID: 1730762

Abstract

Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hypotheses, axons involved in double myelination in the rat superior cervical ganglion were destroyed by chronic guanethidine treatment. Guanethidine-induced sympathectomy resulted in a Wallerian- like pattern of myelin degeneration within 10 d. In doubly myelinated configurations the axon, inner myelin sheath (which lies in contact with the axon), and approximately 75% of outer myelin sheaths broke down by this time. Degenerating outer sheaths were not found at later periods. It is probably that outer sheaths that degenerated were only partially displaced from the axon at the commencement of guanethidine treatment. In contrast, analysis of serial sections showed that completely displaced outer internodes remained ultrastructurally intact. These internodes survived degeneration of the axon and inner sheath, and during the later time points (2-6 wk) they enclosed only connective tissue elements and reorganized Schwann cells/processes. Axonal regeneration was not observed within surviving outer internodes. We therefore conclude that myelin maintenance in the superior cervical ganglion is not dependent on direct axonal contact or diffusible axonal factors. In addition, physical association of Schwann cells with the degenerating axon may be an important factor in precipitating myelin breakdown during Wallerian degeneration.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Epps J., Charron L., Bray G. M. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res. 1976 Mar 5;104(1):1–20. doi: 10.1016/0006-8993(76)90643-0. [DOI] [PubMed] [Google Scholar]
  2. Bigbee J. W., Yoshino J. E., DeVries G. H. Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin-enriched fraction. J Neurocytol. 1987 Aug;16(4):487–496. doi: 10.1007/BF01668503. [DOI] [PubMed] [Google Scholar]
  3. Brockes J. P., Raff M. C., Nishiguchi D. J., Winter J. Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins. J Neurocytol. 1980 Feb;9(1):67–77. doi: 10.1007/BF01205227. [DOI] [PubMed] [Google Scholar]
  4. Burnstock G., Evans B., Gannon B. J., Heath J. W., James V. A new method of destroying adrenergic nerves in adult animals using guanethidine. Br J Pharmacol. 1971 Oct;43(2):295–301. [PMC free article] [PubMed] [Google Scholar]
  5. Heath J. W., Burnstock G. Selectivity of neuronal degeneration produced by chronic guanethidine treatment. J Neurocytol. 1977 Aug;6(4):397–405. doi: 10.1007/BF01178225. [DOI] [PubMed] [Google Scholar]
  6. Heath J. W. Double myelination of axons in the sympathetic nervous system. J Neurocytol. 1982 Apr;11(2):249–262. doi: 10.1007/BF01258246. [DOI] [PubMed] [Google Scholar]
  7. Heath J. W., Evans B. K., Gannon B. J., Burnstock G., James V. B. Degeneration of adrenergic neurons following guanethidine treatment: an ultrastructural study. Virchows Arch B Cell Pathol. 1972;11(2):182–197. doi: 10.1007/BF02889397. [DOI] [PubMed] [Google Scholar]
  8. Jensen-Holm J., Juul P. Ultrastructural changes in the rat superior cervical ganglion following prolonged guanethidine administration. Acta Pharmacol Toxicol (Copenh) 1971;30(3):308–320. doi: 10.1111/j.1600-0773.1971.tb00662.x. [DOI] [PubMed] [Google Scholar]
  9. Johnson E. M., Jr, Manning P. T. Guanethidine-induced destruction of sympathetic neurons. Int Rev Neurobiol. 1984;25:1–37. doi: 10.1016/s0074-7742(08)60676-5. [DOI] [PubMed] [Google Scholar]
  10. Joseph B. S. Somatofugal events in Wallerian degeneration: a conceptual overview. Brain Res. 1973 Sep 14;59:1–18. doi: 10.1016/0006-8993(73)90250-3. [DOI] [PubMed] [Google Scholar]
  11. Kidd G. J., Heath J. W. Double myelination of axons in the sympathetic nervous system of the mouse. I. Ultrastructural features and distribution. J Neurocytol. 1988 Apr;17(2):245–261. doi: 10.1007/BF01674211. [DOI] [PubMed] [Google Scholar]
  12. Kidd G. J., Heath J. W. Double myelination of axons in the sympathetic nervous system of the mouse. II. Mechanisms of formation. J Neurocytol. 1988 Apr;17(2):263–276. doi: 10.1007/BF01674212. [DOI] [PubMed] [Google Scholar]
  13. Kidd G. J., Heath J. W., Dunkley P. R. Degeneration of myelinated sympathetic nerve fibres following treatment with guanethidine. J Neurocytol. 1986 Oct;15(5):561–572. doi: 10.1007/BF01611857. [DOI] [PubMed] [Google Scholar]
  14. LeBlanc A. C., Poduslo J. F. Axonal modulation of myelin gene expression in the peripheral nerve. J Neurosci Res. 1990 Jul;26(3):317–326. doi: 10.1002/jnr.490260308. [DOI] [PubMed] [Google Scholar]
  15. LoPachin R. M., Jr, LoPachin V. R., Saubermann A. J. Effects of axotomy on distribution and concentration of elements in rat sciatic nerve. J Neurochem. 1990 Jan;54(1):320–332. doi: 10.1111/j.1471-4159.1990.tb13317.x. [DOI] [PubMed] [Google Scholar]
  16. Lubińska L. Early course of Wallerian degeneration in myelinated fibres of the rat phrenic nerve. Brain Res. 1977 Jul 8;130(1):47–63. doi: 10.1016/0006-8993(77)90841-1. [DOI] [PubMed] [Google Scholar]
  17. Lunn E. R., Perry V. H., Brown M. C., Rosen H., Gordon S. Absence of Wallerian Degeneration does not Hinder Regeneration in Peripheral Nerve. Eur J Neurosci. 1989;1(1):27–33. doi: 10.1111/j.1460-9568.1989.tb00771.x. [DOI] [PubMed] [Google Scholar]
  18. Malbouisson A. M., Ghabriel M. N., Allt G. The non-directional pattern of axonal changes in Wallerian degeneration: a computer-aided morphometric analysis. J Anat. 1984 Aug;139(Pt 1):159–174. [PMC free article] [PubMed] [Google Scholar]
  19. Mirsky R., Winter J., Abney E. R., Pruss R. M., Gavrilovic J., Raff M. C. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J Cell Biol. 1980 Mar;84(3):483–494. doi: 10.1083/jcb.84.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oaklander A. L., Miller M. S., Spencer P. S. Rapid anterograde spread of premitotic activity along degenerating cat sciatic nerve. J Neurochem. 1987 Jan;48(1):111–114. doi: 10.1111/j.1471-4159.1987.tb13134.x. [DOI] [PubMed] [Google Scholar]
  21. Oaklander A. L., Spencer P. S. Cold blockade of axonal transport activates premitotic activity of Schwann cells and wallerian degeneration. J Neurochem. 1988 Feb;50(2):490–496. doi: 10.1111/j.1471-4159.1988.tb02938.x. [DOI] [PubMed] [Google Scholar]
  22. Poduslo J. F., Berg C. T., Dyck P. J. Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1864–1866. doi: 10.1073/pnas.81.6.1864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Poduslo J. F., Dyck P. J., Berg C. T. Regulation of myelination: Schwann cell transition from a myelin-maintaining state to a quiescent state after permanent nerve transection. J Neurochem. 1985 Feb;44(2):388–400. doi: 10.1111/j.1471-4159.1985.tb05428.x. [DOI] [PubMed] [Google Scholar]
  24. Politis M. J., Sternberger N., Ederle K., Spencer P. S. Studies on the control of myelinogenesis. IV. Neuronal induction of Schwann cell myelin-specific protein synthesis during nerve fiber regeneration. J Neurosci. 1982 Sep;2(9):1252–1266. doi: 10.1523/JNEUROSCI.02-09-01252.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  26. Rutkowski L., Needham L., Frayer K., Carson D., McKhann G., Tennekoon G. I. Evidence that secondary rat Schwann cells in culture maintain their differentiated phenotype. J Neurochem. 1990 Jun;54(6):1895–1904. doi: 10.1111/j.1471-4159.1990.tb04888.x. [DOI] [PubMed] [Google Scholar]
  27. Schlaepfer W. W., Bunge R. P. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol. 1973 Nov;59(2 Pt 1):456–470. doi: 10.1083/jcb.59.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schlaepfer W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 1974 Apr 5;69(2):203–215. doi: 10.1016/0006-8993(74)90002-x. [DOI] [PubMed] [Google Scholar]
  29. Simpson S. A., Young J. Z. Regeneration of fibre diameter after cross-unions of visceral and somatic nerves. J Anat. 1945 Apr;79(Pt 2):48–65. [PMC free article] [PubMed] [Google Scholar]
  30. Smith K. J., Hall S. M. Peripheral demyelination and remyelination initiated by the calcium-selective ionophore ionomycin: in vivo observations. J Neurol Sci. 1988 Jan;83(1):37–53. doi: 10.1016/0022-510x(88)90018-4. [DOI] [PubMed] [Google Scholar]
  31. Smith R. S., Chan H., Schaap C. J. Intermittent myelination of small-diameter sciatic axons in Xenopus laevis. J Neurocytol. 1985 Apr;14(2):269–278. doi: 10.1007/BF01258452. [DOI] [PubMed] [Google Scholar]
  32. Trapp B. D., Hauer P., Lemke G. Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells. J Neurosci. 1988 Sep;8(9):3515–3521. doi: 10.1523/JNEUROSCI.08-09-03515.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weinberg H. J., Spencer P. S. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 1976 Aug 27;113(2):363–378. doi: 10.1016/0006-8993(76)90947-1. [DOI] [PubMed] [Google Scholar]
  34. White F. V., Toews A. D., Goodrum J. F., Novicki D. L., Bouldin T. W., Morell P. Lipid metabolism during early stages of Wallerian degeneration in the rat sciatic nerve. J Neurochem. 1989 Apr;52(4):1085–1092. doi: 10.1111/j.1471-4159.1989.tb01851.x. [DOI] [PubMed] [Google Scholar]
  35. Winter J., Mirsky R., Kadlubowski M. Immunocytochemical study of the appearance of P2 in developing rat peripheral nerve: comparison with other myelin components. J Neurocytol. 1982 Jun;11(3):351–362. doi: 10.1007/BF01257982. [DOI] [PubMed] [Google Scholar]
  36. Yao J. K., Windebank A. J., Poduslo J. F., Yoshino J. E. Axonal regulation of Schwann cell glycolipid biosynthesis. Neurochem Res. 1990 Mar;15(3):279–282. doi: 10.1007/BF00968672. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES