Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Feb 1;116(3):635–646. doi: 10.1083/jcb.116.3.635

Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fc epsilon receptor activation

PMCID: PMC2289326  PMID: 1370498

Abstract

The mAb AA4 binds to novel derivatives of the ganglioside Gd1b on rat basophilic leukemia (RBL-2H3) cells. Some of the gangliosides are located close to the high affinity IgE receptor (Fc epsilon RI), and binding of mAb AA4 inhibits Fc epsilon RI-mediated histamine release. In the present study, mAb AA4 was found to bind exclusively to mast cells in all rat tissues examined. In vitro, within 1 min of mAb AA4 binding, the cells underwent striking morphologic changes. They lost their normal spindle shaped appearance, increased their ruffling, and spread over the surface of the culture dish. These changes were accompanied by a redistribution of the cytoskeletal elements, actin, tubulin, and vimentin, but only the actin was associated with the membrane ruffles. Binding of mAb AA4 also induces a rise in intracellular calcium, stimulates phosphatidyl inositol breakdown, and activates PKC. However, the extent of these changes was less than that observed when the cells were stimulated with antigen or antibody directed against the Fc epsilon RI. None of these changes associated with mAb AA4 binding were seen when the cells were exposed to nonspecific IgG, IgE, or four other anti-cell surface antibodies, nor were the changes induced by binding mAb AA4 at 4 degrees C or in the absence of extracellular calcium. Although mAb AA4 does not stimulate histamine release, it enhances the effect of the calcium ionophore A23187 mediated release. The morphological and biochemical effects produced by mAb AA4 are similar to those seen following activation of the cell through the IgE receptor. Therefore, the surface gangliosides which bind mAb AA4 may function in modulating secretory events.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Nishida E., Ishida J., Saji N., Ogawara H., Hoshi M., Miyata Y., Sakai H. Purified protein kinase C phosphorylates microtubule-associated protein 2. J Biol Chem. 1986 Nov 25;261(33):15648–15651. [PubMed] [Google Scholar]
  2. Balázs M., Szöllösi J., Lee W. C., Haugland R. P., Guzikowski A. P., Fulwyler M. J., Damjanovich S., Feuerstein B. G., Pershadsingh H. A. Fluorescent tetradecanoylphorbol acetate: a novel probe of phorbol ester binding domains. J Cell Biochem. 1991 Jul;46(3):266–276. doi: 10.1002/jcb.240460311. [DOI] [PubMed] [Google Scholar]
  3. Baniyash M., Alkalay I., Eshhar Z. Monoclonal antibodies specific to the alpha-subunit of the mast cell's Fc epsilon R block IgE binding and trigger histamine release. J Immunol. 1987 May 1;138(9):2999–3004. [PubMed] [Google Scholar]
  4. Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981 Apr;11(4):317–323. doi: 10.1002/eji.1830110410. [DOI] [PubMed] [Google Scholar]
  5. Basciano L. K., Berenstein E. H., Kmak L., Siraganian R. P. Monoclonal antibodies that inhibit IgE binding. J Biol Chem. 1986 Sep 5;261(25):11823–11831. [PubMed] [Google Scholar]
  6. Beaven M. A., Guthrie D. F., Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. Synergistic signals in the mechanism of antigen-induced exocytosis in 2H3 cells: evidence for an unidentified signal required for histamine release. J Cell Biol. 1987 Sep;105(3):1129–1136. doi: 10.1083/jcb.105.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benhamou M., Gutkind J. S., Robbins K. C., Siraganian R. P. Tyrosine phosphorylation coupled to IgE receptor-mediated signal transduction and histamine release. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5327–5330. doi: 10.1073/pnas.87.14.5327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bershadsky A. D., Ivanova O. Y., Lyass L. A., Pletyushkina O. Y., Vasiliev J. M., Gelfand I. M. Cytoskeletal reorganizations responsible for the phorbol ester-induced formation of cytoplasmic processes: possible involvement of intermediate filaments. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1884–1888. doi: 10.1073/pnas.87.5.1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Braun J., Hochman P. S., Unanue E. R. Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J Immunol. 1982 Mar;128(3):1198–1204. [PubMed] [Google Scholar]
  10. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem. 1984 Jun 10;259(11):6818–6825. [PubMed] [Google Scholar]
  11. Bremer E. G., Schlessinger J., Hakomori S. Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem. 1986 Feb 15;261(5):2434–2440. [PubMed] [Google Scholar]
  12. Burn P. Phosphatidylinositol cycle and its possible involvement in the regulation of cytoskeleton-membrane interactions. J Cell Biochem. 1988 Jan;36(1):15–24. doi: 10.1002/jcb.240360103. [DOI] [PubMed] [Google Scholar]
  13. Cunha-Melo J. R., Gonzaga H. M., Ali H., Huang F. L., Huang K. P., Beaven M. A. Studies of protein kinase C in the rat basophilic leukemia (RBL-2H3) cell reveal that antigen-induced signals are not mimicked by the actions of phorbol myristate acetate and Ca2+ ionophore. J Immunol. 1989 Oct 15;143(8):2617–2625. [PubMed] [Google Scholar]
  14. Downey G. P., Chan C. K., Trudel S., Grinstein S. Actin assembly in electropermeabilized neutrophils: role of intracellular calcium. J Cell Biol. 1990 Jun;110(6):1975–1982. doi: 10.1083/jcb.110.6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dyer C. A., Benjamins J. A. Glycolipids and transmembrane signaling: antibodies to galactocerebroside cause an influx of calcium in oligodendrocytes. J Cell Biol. 1990 Aug;111(2):625–633. doi: 10.1083/jcb.111.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fishman P. H. Recent advances in identifying the functions of gangliosides. Chem Phys Lipids. 1986 Dec 15;42(1-3):137–151. doi: 10.1016/0009-3084(86)90049-6. [DOI] [PubMed] [Google Scholar]
  17. Guo N. H., Her G. R., Reinhold V. N., Brennan M. J., Siraganian R. P., Ginsburg V. Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel alpha-galactosyl derivatives of ganglioside GD1b. J Biol Chem. 1989 Aug 5;264(22):13267–13272. [PubMed] [Google Scholar]
  18. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990 Nov 5;265(31):18713–18716. [PubMed] [Google Scholar]
  19. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  20. Harrison B. C., Mobley P. L. Phorbol ester-induced change in astrocyte morphology: correlation with protein kinase C activation and protein phosphorylation. J Neurosci Res. 1990 Jan;25(1):71–80. doi: 10.1002/jnr.490250109. [DOI] [PubMed] [Google Scholar]
  21. Hersey P., Schibeci S. D., Townsend P., Burns C., Cheresh D. A. Potentiation of lymphocyte responses by monoclonal antibodies to the ganglioside GD3. Cancer Res. 1986 Dec;46(12 Pt 1):6083–6090. [PubMed] [Google Scholar]
  22. Hersey P., Schibeci S., Cheresh D. Augmentation of lymphocyte responses by monoclonal antibodies to the gangliosides GD3 and GD2: the role of protein kinase C, cyclic nucleotides, and intracellular calcium. Cell Immunol. 1989 Apr 1;119(2):263–278. doi: 10.1016/0008-8749(89)90243-8. [DOI] [PubMed] [Google Scholar]
  23. Huang C. K., Devanney J. F., Kennedy S. P. Vimentin, a cytoskeletal substrate of protein kinase C. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1006–1011. doi: 10.1016/0006-291x(88)90728-0. [DOI] [PubMed] [Google Scholar]
  24. Hultsch T., Rodriguez J. L., Kaliner M. A., Hohman R. J. Cyclosporin A inhibits degranulation of rat basophilic leukemia cells and human basophils. Inhibition of mediator release without affecting PI hydrolysis or Ca2+ fluxes. J Immunol. 1990 Apr 1;144(7):2659–2664. [PubMed] [Google Scholar]
  25. Igarashi Y., Nojiri H., Hanai N., Hakomori S. Gangliosides that modulate membrane protein function. Methods Enzymol. 1989;179:521–541. doi: 10.1016/0076-6879(89)79152-7. [DOI] [PubMed] [Google Scholar]
  26. Kane P. M., Holowka D., Baird B. Cross-linking of IgE-receptor complexes by rigid bivalent antigens greater than 200 A in length triggers cellular degranulation. J Cell Biol. 1988 Sep;107(3):969–980. doi: 10.1083/jcb.107.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kellie S., Holme T. C., Bissell M. J. Interaction of tumour promoters with epithelial cells in culture. An immunofluorescence study. Exp Cell Res. 1985 Oct;160(2):259–274. doi: 10.1016/0014-4827(85)90174-0. [DOI] [PubMed] [Google Scholar]
  28. Kosugi S., Mori T., Iwamori M., Nagai Y., Imura H. Islet cell-activating protein reverses anti-fucosyl GM1 ganglioside antibody-induced inhibition of adenosine 3',5'-monophosphate production in FRTL-5 rat thyroid cells. Endocrinology. 1989 Mar;124(3):1230–1234. doi: 10.1210/endo-124-3-1230. [DOI] [PubMed] [Google Scholar]
  29. Lingwood C. A., Hakomori S. Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibodies to glycolipids. Exp Cell Res. 1977 Sep;108(2):385–391. doi: 10.1016/s0014-4827(77)80045-1. [DOI] [PubMed] [Google Scholar]
  30. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  31. Maeyama K., Hohman R. J., Metzger H., Beaven M. A. Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water. J Biol Chem. 1986 Feb 25;261(6):2583–2592. [PubMed] [Google Scholar]
  32. Menon A. K., Holowka D., Webb W. W., Baird B. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J Cell Biol. 1986 Feb;102(2):541–550. doi: 10.1083/jcb.102.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Metzger H., Alcaraz G., Hohman R., Kinet J. P., Pribluda V., Quarto R. The receptor with high affinity for immunoglobulin E. Annu Rev Immunol. 1986;4:419–470. doi: 10.1146/annurev.iy.04.040186.002223. [DOI] [PubMed] [Google Scholar]
  34. Pearce F. L. Calcium and histamine secretion from mast cells. Prog Med Chem. 1982;19:59–109. doi: 10.1016/s0079-6468(08)70328-x. [DOI] [PubMed] [Google Scholar]
  35. Pfeiffer J. R., Seagrave J. C., Davis B. H., Deanin G. G., Oliver J. M. Membrane and cytoskeletal changes associated with IgE-mediated serotonin release from rat basophilic leukemia cells. J Cell Biol. 1985 Dec;101(6):2145–2155. doi: 10.1083/jcb.101.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Phaire-Washington L., Silverstein S. C., Wang E. Phorbol myristate acetate stimulates microtubule and 10-nm filament extension and lysosome redistribution in mouse macrophages. J Cell Biol. 1980 Aug;86(2):641–655. doi: 10.1083/jcb.86.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pontremoli S., Melloni E., Michetti M., Sparatore B., Salamino F., Sacco O., Horecker B. L. Phosphorylation and proteolytic modification of specific cytoskeletal proteins in human neutrophils stimulated by phorbol 12-myristate 13-acetate. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3604–3608. doi: 10.1073/pnas.84.11.3604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pontremoli S., Melloni E., Michetti M., Sparatore B., Salamino F., Sacco O., Horecker B. L. Phosphorylation by protein kinase C of a 20-kDa cytoskeletal polypeptide enhances its susceptibility to digestion by calpain. Proc Natl Acad Sci U S A. 1987 Jan;84(2):398–401. doi: 10.1073/pnas.84.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rifkin D. B., Crowe R. M., Pollack R. Tumor promoters induce changes in the chick embryo fibroblast cytoskeleton. Cell. 1979 Oct;18(2):361–368. doi: 10.1016/0092-8674(79)90055-2. [DOI] [PubMed] [Google Scholar]
  40. Robertson D., Holowka D., Baird B. Cross-linking of immunoglobulin E-receptor complexes induces their interaction with the cytoskeleton of rat basophilic leukemia cells. J Immunol. 1986 Jun 15;136(12):4565–4572. [PubMed] [Google Scholar]
  41. Sahara N., Siraganian R. P., Oliver C. Morphological changes induced by the calcium ionophore A23187 in rat basophilic leukemia (2H3) cells. J Histochem Cytochem. 1990 Jul;38(7):975–983. doi: 10.1177/38.7.1693935. [DOI] [PubMed] [Google Scholar]
  42. Schliwa M., Nakamura T., Porter K. R., Euteneuer U. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J Cell Biol. 1984 Sep;99(3):1045–1059. doi: 10.1083/jcb.99.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sha'afi R. I., Shefcyk J., Yassin R., Molski T. F., Volpi M., Naccache P. H., White J. R., Feinstein M. B., Becker E. L. Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin? J Cell Biol. 1986 Apr;102(4):1459–1463. doi: 10.1083/jcb.102.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Siraganian R. P., McGivney A., Barsumian E. L., Crews F. T., Hirata F., Axelrod J. Variants of the rat basophilic leukemia cell line for the study of histamine release. Fed Proc. 1982 Jan;41(1):30–34. [PubMed] [Google Scholar]
  45. Stracke M. L., Basciano L. K., Fischler C., Berenstein E. H., Siraganian R. P. Characterization of monoclonal antibodies produced by immunization with partially purified IgE receptor complexes. Mol Immunol. 1987 Apr;24(4):347–356. doi: 10.1016/0161-5890(87)90176-3. [DOI] [PubMed] [Google Scholar]
  46. Teshima R., Suzuki K., Ikebuchi H., Terao T. Enhancement of the phosphorylation of membrane bound myosin light chain by antigen stimulation in rat basophilic leukemia cells. Mol Immunol. 1989 Jul;26(7):641–648. doi: 10.1016/0161-5890(89)90046-1. [DOI] [PubMed] [Google Scholar]
  47. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tsuyama S., Bramblett G. T., Huang K. P., Flavin M. Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases. J Biol Chem. 1986 Mar 25;261(9):4110–4116. [PubMed] [Google Scholar]
  49. Weis F. M., Davis R. J. Regulation of epidermal growth factor receptor signal transduction. Role of gangliosides. J Biol Chem. 1990 Jul 15;265(20):12059–12066. [PubMed] [Google Scholar]
  50. Wheeler M. E., Gerrard J. M., Carroll R. C. Reciprocal transmembranous receptor-cytoskeleton interactions in concanavalin A-activated platelets. J Cell Biol. 1985 Sep;101(3):993–1000. doi: 10.1083/jcb.101.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES