Abstract
We have previously described the isolation of a mutant KB cell (Cyt 1 mutant) resistant to the cytotoxic effect of cytochalasin B (CB). The Cyt 1 mutant carries an altered form of beta-actin (beta'-actin) and lacks normal beta-actin (Toyama, S., and S. Toyama. 1984. Cell. 37:609- 614). Increased resistance of the Cyt 1 mutant to CB in vivo is reflected in altered properties of beta'-actin in vitro (Toyama, S., and S. Toyama. 1988. J. Cell Biol. 107:1499-1504). Here, we show that the mutation in beta-actin is solely responsible for the cytochalasin- resistant phenotype of the Cyt mutant. We have isolated a cDNA clone encoding beta'-actin from Cyt 1 cells. Sequence analysis reveals two mutations in the coding region that substitute two amino acid residues (Val139----Met and Ala295----Asp). Expression of the beta'-actin cDNA confers cytochalasin resistance upon transformed cytochalasin-sensitive KB cells. Levels of resistance to CB in the transformed cell clones correlate well with amounts of beta'-actin polypeptide. Both of the two mutations in beta'-actin are necessary for the high level expression of cytochalasin resistance. Overall, we conclude that the primary site of action of cytochalasin on cell motility processes in vivo is actin.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonder E. M., Mooseker M. S. Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament. J Cell Biol. 1986 Jan;102(1):282–288. doi: 10.1083/jcb.102.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner S. L., Korn E. D. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem. 1979 Oct 25;254(20):9982–9985. [PubMed] [Google Scholar]
- Brown S. S., Spudich J. A. Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol. 1979 Dec;83(3):657–662. doi: 10.1083/jcb.83.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown S. S., Spudich J. A. Mechanism of action of cytochalasin: evidence that it binds to actin filament ends. J Cell Biol. 1981 Mar;88(3):487–491. doi: 10.1083/jcb.88.3.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erba H. P., Eddy R., Shows T., Kedes L., Gunning P. Structure, chromosome location, and expression of the human gamma-actin gene: differential evolution, location, and expression of the cytoskeletal beta- and gamma-actin genes. Mol Cell Biol. 1988 Apr;8(4):1775–1789. doi: 10.1128/mcb.8.4.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flanagan M. D., Lin S. Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J Biol Chem. 1980 Feb 10;255(3):835–838. [PubMed] [Google Scholar]
- Goddette D. W., Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986 Dec 5;261(34):15974–15980. [PubMed] [Google Scholar]
- Goddette D. W., Frieden C. The binding of cytochalasin D to monomeric actin. Biochem Biophys Res Commun. 1985 May 16;128(3):1087–1092. doi: 10.1016/0006-291x(85)91051-4. [DOI] [PubMed] [Google Scholar]
- Goddette D. W., Frieden C. The kinetics of cytochalasin D binding to monomeric actin. J Biol Chem. 1986 Dec 5;261(34):15970–15973. [PubMed] [Google Scholar]
- Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- Halpern M. E., Smiley J. R. Effects of deletions on expression of the herpes simplex virus thymidine kinase gene from the intact viral genome: the amino terminus of the enzyme is dispensable for catalytic activity. J Virol. 1984 Jun;50(3):733–738. doi: 10.1128/jvi.50.3.733-738.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanukoglu I., Tanese N., Fuchs E. Complementary DNA sequence of a human cytoplasmic actin. Interspecies divergence of 3' non-coding regions. J Mol Biol. 1983 Feb 5;163(4):673–678. doi: 10.1016/0022-2836(83)90117-1. [DOI] [PubMed] [Google Scholar]
- Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
- Irmiere A. F., Manos M. M., Jacobson J. G., Gibbs J. S., Coen D. M. Effect of an amber mutation in the herpes simplex virus thymidine kinase gene on polypeptide synthesis and stability. Virology. 1989 Feb;168(2):210–220. doi: 10.1016/0042-6822(89)90260-2. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
- Lin D. C., Tobin K. D., Grumet M., Lin S. Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation. J Cell Biol. 1980 Feb;84(2):455–460. doi: 10.1083/jcb.84.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Löw I., Dancker P. Effect of cytochalasin B on formation and properties of muscle F-actin. Biochim Biophys Acta. 1976 May 14;430(2):366–374. doi: 10.1016/0005-2728(76)90092-x. [DOI] [PubMed] [Google Scholar]
- Mabuchi I. Electron microscopic determination of the actin filament end at which cytochalasin B blocks monomer addition using the acrosomal actin bundle from horseshoe crab sperm. J Biochem. 1983 Oct;94(4):1349–1352. doi: 10.1093/oxfordjournals.jbchem.a134480. [DOI] [PubMed] [Google Scholar]
- MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponte P., Ng S. Y., Engel J., Gunning P., Kedes L. Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of a human beta-actin cDNA. Nucleic Acids Res. 1984 Feb 10;12(3):1687–1696. doi: 10.1093/nar/12.3.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyama S., Toyama S. A variant form of beta-actin in a mutant of KB cells resistant to cytochalasin B. Cell. 1984 Jun;37(2):609–614. doi: 10.1016/0092-8674(84)90391-x. [DOI] [PubMed] [Google Scholar]
- Toyama S., Toyama S. Functional alterations in beta'-actin from a KB cell mutant resistant to cytochalasin B. J Cell Biol. 1988 Oct;107(4):1499–1504. doi: 10.1083/jcb.107.4.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toyama S., Toyama S., Uetake H. Altered cell-fusion capacity in lines of KB cells resistant to Sendai virus-induced cytolysis. Virology. 1977 Feb;76(2):503–515. doi: 10.1016/0042-6822(77)90233-1. [DOI] [PubMed] [Google Scholar]