Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Feb 2;116(4):1019–1033. doi: 10.1083/jcb.116.4.1019

pp60src tyrosine kinase modulates P19 embryonal carcinoma cell fate by inhibiting neuronal but not epithelial differentiation

PMCID: PMC2289338  PMID: 1370835

Abstract

P19 embryonal carcinoma cells provide an in vitro model system to analyze the events involved in neural differentiation. These multipotential stem cells can be induced by retinoic acid (RA) to differentiate into neural cells. We have investigated the ability of several variant forms of the protein-tyrosine kinase (PTK) pp60src to modulate cell fate determination in this system. Normally, P19 cells are induced to differentiate along a neural lineage when allowed to form extensive cell-cell contacts in large multicellular aggregates during exposure to RA. Through analysis of markers of epithelial (keratin and desmosomal proteins) and neuronal (neurofilament) cells we have found that RA-induced P19 cells transiently express epithelial markers before neuronal differentiation. Under these inductive conditions, expression of pp60v-src or expression of the neuronal variant pp60c-src+ inhibited neuronal differentiation, and resulted in maintained expression of an epithelial phenotype. Morphological analysis showed that expression of pp60src PTKs results in decreased cell-cell adhesion during the critical cell aggregation stage of the neural differentiation procedure. The effects of pp60v-src on cell fate and cell-cell adhesion could be mimicked by direct modulation of Ca+(+)- dependent cell-cell contact during RA induction of normal P19 cells. We conclude that the neural lineage of P19 cells includes an early epithelial intermediate and suggest that tyrosine phosphorylation can modulate cell fate determination during an early cell-cell adhesion- dependent event in neurogenesis.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D., Baribault H., Kemler R. Altered uvomorulin expression in a noncompacting mutant cell line of F9 embryonal carcinoma cells. Dev Biol. 1990 Apr;138(2):338–347. doi: 10.1016/0012-1606(90)90201-s. [DOI] [PubMed] [Google Scholar]
  2. Alemà S., Casalbore P., Agostini E., Tatò F. Differentiation of PC12 phaeochromocytoma cells induced by v-src oncogene. Nature. 1985 Aug 8;316(6028):557–559. doi: 10.1038/316557a0. [DOI] [PubMed] [Google Scholar]
  3. Baker N. E., Rubin G. M. Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature. 1989 Jul 13;340(6229):150–153. doi: 10.1038/340150a0. [DOI] [PubMed] [Google Scholar]
  4. Banerjee U., Zipursky S. L. The role of cell-cell interaction in the development of the Drosophila visual system. Neuron. 1990 Feb;4(2):177–187. doi: 10.1016/0896-6273(90)90093-u. [DOI] [PubMed] [Google Scholar]
  5. Boulter C. A., Aguzzi A., Williams R. L., Wagner E. F., Evans M. J., Beddington R. Expression of v-src induces aberrant development and twinning in chimaeric mice. Development. 1991 Feb;111(2):357–366. doi: 10.1242/dev.111.2.357. [DOI] [PubMed] [Google Scholar]
  6. Boulter C. A., Wagner E. F. The effects of v-src expression on the differentiation of embryonal carcinoma cells. Oncogene. 1988 Mar;2(3):207–214. [PubMed] [Google Scholar]
  7. Brackenbury R., Greenberg M. E., Edelman G. M. Phenotypic changes and loss of N-CAM-mediated adhesion in transformed embryonic chicken retinal cells. J Cell Biol. 1984 Dec;99(6):1944–1954. doi: 10.1083/jcb.99.6.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brugge J. S., Cotton P. C., Queral A. E., Barrett J. N., Nonner D., Keane R. W. Neurones express high levels of a structurally modified, activated form of pp60c-src. Nature. 1985 Aug 8;316(6028):554–557. doi: 10.1038/316554a0. [DOI] [PubMed] [Google Scholar]
  9. Campione-Piccardo J., Sun J. J., Craig J., McBurney M. W. Cell-cell interaction can influence drug-induced differentiation of murine embryonal carcinoma cells. Dev Biol. 1985 May;109(1):25–31. doi: 10.1016/0012-1606(85)90342-2. [DOI] [PubMed] [Google Scholar]
  10. Cepko C. L. Immortalization of neural cells via retrovirus-mediated oncogene transduction. Annu Rev Neurosci. 1989;12:47–65. doi: 10.1146/annurev.ne.12.030189.000403. [DOI] [PubMed] [Google Scholar]
  11. Coussens P. M., Cooper J. A., Hunter T., Shalloway D. Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol Cell Biol. 1985 Oct;5(10):2753–2763. doi: 10.1128/mcb.5.10.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DeLorbe W. J., Luciw P. A., Goodman H. M., Varmus H. E., Bishop J. M. Molecular cloning and characterization of avian sarcoma virus circular DNA molecules. J Virol. 1980 Oct;36(1):50–61. doi: 10.1128/jvi.36.1.50-61.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Detrick R. J., Dickey D., Kintner C. R. The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos. Neuron. 1990 Apr;4(4):493–506. doi: 10.1016/0896-6273(90)90108-r. [DOI] [PubMed] [Google Scholar]
  14. Edwards M. K., McBurney M. W. The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev Biol. 1983 Jul;98(1):187–191. doi: 10.1016/0012-1606(83)90348-2. [DOI] [PubMed] [Google Scholar]
  15. Falconer M. M., Vielkind U., Brown D. L. Association of acetylated microtubules, vimentin intermediate filaments, and MAP 2 during early neural differentiation in EC cell culture. Biochem Cell Biol. 1989 Sep;67(9):537–544. doi: 10.1139/o89-085. [DOI] [PubMed] [Google Scholar]
  16. Filson A. J., Azarnia R., Beyer E. C., Loewenstein W. R., Brugge J. S. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication. Cell Growth Differ. 1990 Dec;1(12):661–668. [PubMed] [Google Scholar]
  17. Glenney J. R., Jr, Zokas L., Kamps M. P. Monoclonal antibodies to phosphotyrosine. J Immunol Methods. 1988 May 9;109(2):277–285. doi: 10.1016/0022-1759(88)90253-0. [DOI] [PubMed] [Google Scholar]
  18. Golden A., Brugge J. S. Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc Natl Acad Sci U S A. 1989 Feb;86(3):901–905. doi: 10.1073/pnas.86.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gorman C. M., Rigby P. W., Lane D. P. Negative regulation of viral enhancers in undifferentiated embryonic stem cells. Cell. 1985 Sep;42(2):519–526. doi: 10.1016/0092-8674(85)90109-6. [DOI] [PubMed] [Google Scholar]
  20. Grunz H., Tacke L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ Dev. 1989 Dec;28(3):211–217. doi: 10.1016/0922-3371(89)90006-3. [DOI] [PubMed] [Google Scholar]
  21. Haltmeier H., Rohrer H. Distinct and different effects of the oncogenes v-myc and v-src on avian sympathetic neurons: retroviral transfer of v-myc stimulates neuronal proliferation whereas v-src transfer enhances neuronal differentiation. J Cell Biol. 1990 Jun;110(6):2087–2098. doi: 10.1083/jcb.110.6.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howe W. E., Klier F. G., Oshima R. G. Murine endodermal cytokeratins Endo A and Endo B are localized in the same intermediate filament. J Histochem Cytochem. 1986 Jun;34(6):785–793. doi: 10.1177/34.6.2422254. [DOI] [PubMed] [Google Scholar]
  23. Iba H., Takeya T., Cross F. R., Hanafusa T., Hanafusa H. Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4424–4428. doi: 10.1073/pnas.81.14.4424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jackson B. W., Grund C., Schmid E., Bürki K., Franke W. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation. 1980;17(3):161–179. doi: 10.1111/j.1432-0436.1980.tb01093.x. [DOI] [PubMed] [Google Scholar]
  25. Jackson B. W., Grund C., Winter S., Franke W. W., Illmensee K. Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos. Differentiation. 1981;20(3):203–216. doi: 10.1111/j.1432-0436.1981.tb01177.x. [DOI] [PubMed] [Google Scholar]
  26. Jones-Villeneuve E. M., McBurney M. W., Rogers K. A., Kalnins V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol. 1982 Aug;94(2):253–262. doi: 10.1083/jcb.94.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
  28. Kemler R., Brûlet P., Schnebelen M. T., Gaillard J., Jacob F. Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J Embryol Exp Morphol. 1981 Aug;64:45–60. [PubMed] [Google Scholar]
  29. Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
  30. Kurki P., Laasonen A., Tan E. M., Lehtonen E. Cell proliferation and expression of cytokeratin filaments in F9 embryonal carcinoma cells. Development. 1989 Aug;106(4):635–640. doi: 10.1242/dev.106.4.635. [DOI] [PubMed] [Google Scholar]
  31. Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lendahl U., Zimmerman L. B., McKay R. D. CNS stem cells express a new class of intermediate filament protein. Cell. 1990 Feb 23;60(4):585–595. doi: 10.1016/0092-8674(90)90662-x. [DOI] [PubMed] [Google Scholar]
  33. Levine J. M., Flynn P. Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci. 1986 Nov;6(11):3374–3384. doi: 10.1523/JNEUROSCI.06-11-03374.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Levy J. B., Brugge J. S. Biological and biochemical properties of the c-src+ gene product overexpressed in chicken embryo fibroblasts. Mol Cell Biol. 1989 Aug;9(8):3332–3341. doi: 10.1128/mcb.9.8.3332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Levy J. B., Dorai T., Wang L. H., Brugge J. S. The structurally distinct form of pp60c-src detected in neuronal cells is encoded by a unique c-src mRNA. Mol Cell Biol. 1987 Nov;7(11):4142–4145. doi: 10.1128/mcb.7.11.4142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Levy J. B., Iba H., Hanafusa H. Activation of the transforming potential of p60c-src by a single amino acid change. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4228–4232. doi: 10.1073/pnas.83.12.4228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lipsich L. A., Lewis A. J., Brugge J. S. Isolation of monoclonal antibodies that recognize the transforming proteins of avian sarcoma viruses. J Virol. 1983 Nov;48(2):352–360. doi: 10.1128/jvi.48.2.352-360.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Littlefield J. W. Stepwise aggregation, compaction, and differentiation of uncompacted F9 cells. Dev Genet. 1989;10(5):402–410. doi: 10.1002/dvg.1020100508. [DOI] [PubMed] [Google Scholar]
  39. Lynch S. A., Brugge J. S., Levine J. M. Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science. 1986 Nov 14;234(4778):873–876. doi: 10.1126/science.3095923. [DOI] [PubMed] [Google Scholar]
  40. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  41. Martinez R., Mathey-Prevot B., Bernards A., Baltimore D. Neuronal pp60c-src contains a six-amino acid insertion relative to its non-neuronal counterpart. Science. 1987 Jul 24;237(4813):411–415. doi: 10.1126/science.2440106. [DOI] [PubMed] [Google Scholar]
  42. McBurney M. W., Reuhl K. R., Ally A. I., Nasipuri S., Bell J. C., Craig J. Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J Neurosci. 1988 Mar;8(3):1063–1073. doi: 10.1523/JNEUROSCI.08-03-01063.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Melton D. A. Pattern formation during animal development. Science. 1991 Apr 12;252(5003):234–241. doi: 10.1126/science.1672778. [DOI] [PubMed] [Google Scholar]
  44. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  45. Moll R., Cowin P., Kapprell H. P., Franke W. W. Desmosomal proteins: new markers for identification and classification of tumors. Lab Invest. 1986 Jan;54(1):4–25. [PubMed] [Google Scholar]
  46. Mummery C. L., Feyen A., Freund E., Shen S. Characteristics of embryonic stem cell differentiation: a comparison with two embryonal carcinoma cell lines. Cell Differ Dev. 1990 Jun;30(3):195–206. doi: 10.1016/0922-3371(90)90139-n. [DOI] [PubMed] [Google Scholar]
  47. Mummery C. L., Slager H., Kruijer W., Feijen A., Freund E., Koornneef I., van den Eijnden-van Raaij A. J. Expression of transforming growth factor beta 2 during the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol. 1990 Jan;137(1):161–170. doi: 10.1016/0012-1606(90)90017-d. [DOI] [PubMed] [Google Scholar]
  48. Mummery C. L., van den Brink C. E., de Laat S. W. Commitment to differentiation induced by retinoic acid in P19 embryonal carcinoma cells is cell cycle dependent. Dev Biol. 1987 May;121(1):10–19. doi: 10.1016/0012-1606(87)90133-3. [DOI] [PubMed] [Google Scholar]
  49. Nelson W. J., Veshnock P. J. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J Cell Biol. 1986 Nov;103(5):1751–1765. doi: 10.1083/jcb.103.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Oddie K. M., Litz J. S., Balserak J. C., Payne D. M., Creutz C. E., Parsons S. J. Modulation of pp60c-src tyrosine kinase activity during secretion in stimulated bovine adrenal chromaffin cells. J Neurosci Res. 1989 Sep;24(1):38–48. doi: 10.1002/jnr.490240107. [DOI] [PubMed] [Google Scholar]
  51. Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 Jun;8(6):1711–1717. doi: 10.1002/j.1460-2075.1989.tb03563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Parsons S. J., McCarley D. J., Raymond V. W., Parsons J. T. Localization of conserved and nonconserved epitopes within the Rous sarcoma virus-encoded src protein. J Virol. 1986 Sep;59(3):755–758. doi: 10.1128/jvi.59.3.755-758.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Pasdar M., Nelson W. J. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. I. Biochemical analysis. J Cell Biol. 1988 Mar;106(3):677–685. doi: 10.1083/jcb.106.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pawson T., Bernstein A. Receptor tyrosine kinases: genetic evidence for their role in Drosophila and mouse development. Trends Genet. 1990 Nov;6(11):350–356. doi: 10.1016/0168-9525(90)90276-c. [DOI] [PubMed] [Google Scholar]
  55. Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  56. Rossant J., McBurney M. W. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J Embryol Exp Morphol. 1982 Aug;70:99–112. [PubMed] [Google Scholar]
  57. Rudnicki M. A., Sawtell N. M., Reuhl K. R., Berg R., Craig J. C., Jardine K., Lessard J. L., McBurney M. W. Smooth muscle actin expression during P19 embryonal carcinoma differentiation in cell culture. J Cell Physiol. 1990 Jan;142(1):89–98. doi: 10.1002/jcp.1041420112. [DOI] [PubMed] [Google Scholar]
  58. Ruiz i Altaba A. Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Development. 1990 Apr;108(4):595–604. doi: 10.1242/dev.108.4.595. [DOI] [PubMed] [Google Scholar]
  59. Smith S. C., Reuhl K. R., Craig J., McBurney M. W. The role of aggregation in embryonal carcinoma cell differentiation. J Cell Physiol. 1987 Apr;131(1):74–84. doi: 10.1002/jcp.1041310112. [DOI] [PubMed] [Google Scholar]
  60. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Soriano P., Montgomery C., Geske R., Bradley A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell. 1991 Feb 22;64(4):693–702. doi: 10.1016/0092-8674(91)90499-o. [DOI] [PubMed] [Google Scholar]
  62. Strickland S., Smith K. K., Marotti K. R. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell. 1980 Sep;21(2):347–355. doi: 10.1016/0092-8674(80)90471-7. [DOI] [PubMed] [Google Scholar]
  63. Swenson K. I., Piwnica-Worms H., McNamee H., Paul D. L. Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Regul. 1990 Dec;1(13):989–1002. doi: 10.1091/mbc.1.13.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
  65. Vestweber D., Kemler R. Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res. 1984 May;152(1):169–178. doi: 10.1016/0014-4827(84)90241-6. [DOI] [PubMed] [Google Scholar]
  66. Volberg T., Geiger B., Dror R., Zick Y. Modulation of intercellular adherens-type junctions and tyrosine phosphorylation of their components in RSV-transformed cultured chick lens cells. Cell Regul. 1991 Feb;2(2):105–120. doi: 10.1091/mbc.2.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Warren S. L., Nelson W. J. Nonmitogenic morphoregulatory action of pp60v-src on multicellular epithelial structures. Mol Cell Biol. 1987 Apr;7(4):1326–1337. doi: 10.1128/mcb.7.4.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. den Hertog J., de Laat S. W., Schlessinger J., Kruijer W. Neuronal differentiation in response to epidermal growth factor of transfected murine P19 embryonal carcinoma cells expressing human epidermal growth factor receptors. Cell Growth Differ. 1991 Mar;2(3):155–164. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES