Abstract
Hyalin is a large (ca. 350 x 10(3) kD by gel electrophoresis) molecule that contributes to the hyalin layer surrounding the sea urchin embryo. In previous work a mAb (McA Tg-HYL), specific for hyalin, was found to inhibit cell-hyalin adhesion and block morphogenesis of whole embryos (Adelson, D. L., and T. D. Humphreys. 1988. Development. 104:391-402). In this report, hyalin ultrastructure was examined via rotary shadowing. Hyalin appeared to be a filamentous molecule approximately 75-nm long with a globular "head" about 12 nm in diameter that tended to form aggregates by associating head to head. Hyalin molecules tended to associate with a distinct high molecular weight globular particle ("core"). In fractions containing the core particle often more than one hyalin molecule were seen to be associated with the core. The core particle maintained a tenacious association with hyalin throughout purification procedures. The site(s) of McA Tg-HYL binding to the hyalin molecule were visualized by decorating purified hyalin with the antibody and then rotary shadowing the complex. In these experiments, McA Tg-HYL attached to the hyalin filament near the head region in a pattern suggesting that more than one antibody binding site exists on the hyalin filament. From the ultrastructural data and from the cell adhesion data presented earlier we conclude that hyalin is a filamentous molecule that binds to other hyalin molecules and contains multiple cell binding sites. Attempts were made to demonstrate the existence of lower molecular weight hyalin precursors. Whilst no such precursors could be identified by immunoprecipitation of in vivo labeled embryo lysates, immunoprecipitation of in vitro translation products suggested such precursors (ca 40 x 10(3) kD) might exist.
Full Text
The Full Text of this article is available as a PDF (800.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelson D. L., Humphreys T. Sea urchin morphogenesis and cell-hyalin adhesion are perturbed by a monoclonal antibody specific for hyalin. Development. 1988 Nov;104(3):391–402. doi: 10.1242/dev.104.3.391. [DOI] [PubMed] [Google Scholar]
- Citkowitz E. Analysis of the isolated hyaline layer of sea urchin embryos. Dev Biol. 1972 Apr;27(4):494–503. doi: 10.1016/0012-1606(72)90188-1. [DOI] [PubMed] [Google Scholar]
- Citkowitz E. The hyaline layer: its isolation and role in echinoderm development. Dev Biol. 1971 Mar;24(3):348–362. doi: 10.1016/0012-1606(71)90085-6. [DOI] [PubMed] [Google Scholar]
- DAN K. Cyto-embryology of echinoderms and amphibia. Int Rev Cytol. 1960;9:321–367. doi: 10.1016/s0074-7696(08)62751-5. [DOI] [PubMed] [Google Scholar]
- Erickson H. P., Carrell N. A. Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem. 1983 Dec 10;258(23):14539–14544. [PubMed] [Google Scholar]
- Fink R. D., McClay D. R. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev Biol. 1985 Jan;107(1):66–74. doi: 10.1016/0012-1606(85)90376-8. [DOI] [PubMed] [Google Scholar]
- Gray J., Justice R., Nagel G. M., Carroll E. J., Jr Resolution and characterization of a major protein of the sea urchin hyaline layer. J Biol Chem. 1986 Jul 15;261(20):9282–9288. [PubMed] [Google Scholar]
- Gustafson T., Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol Rev Camb Philos Soc. 1967 Aug;42(3):442–498. doi: 10.1111/j.1469-185x.1967.tb01482.x. [DOI] [PubMed] [Google Scholar]
- Hylander B. L., Summers R. G. An ultrastructural immunocytochemical localization of hyalin in the sea urchin egg. Dev Biol. 1982 Oct;93(2):368–380. doi: 10.1016/0012-1606(82)90124-5. [DOI] [PubMed] [Google Scholar]
- Kane R. E. Direct isolation of the hyaline layer protein released from the cortical granules of the sea urchin egg at fertilization. J Cell Biol. 1970 Jun;45(3):615–622. doi: 10.1083/jcb.45.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Luca F. C., Ruderman J. V. Control of programmed cyclin destruction in a cell-free system. J Cell Biol. 1989 Nov;109(5):1895–1909. doi: 10.1083/jcb.109.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCarthy R. A., Beck K., Burger M. M. Laminin is structurally conserved in the sea urchin basal lamina. EMBO J. 1987 Jun;6(6):1587–1593. doi: 10.1002/j.1460-2075.1987.tb02404.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClay D. R., Fink R. D. Sea urchin hyalin: appearance and function in development. Dev Biol. 1982 Aug;92(2):285–293. doi: 10.1016/0012-1606(82)90175-0. [DOI] [PubMed] [Google Scholar]
- McClay D. R., Matranga V. On the role of calcium in the adhesion of embryonic sea urchin cells. Exp Cell Res. 1986 Jul;165(1):152–164. doi: 10.1016/0014-4827(86)90540-9. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
- Robinson J. J. Roles for Ca2+, Mg2+ and NaCl in modulating the self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer. Biochem J. 1988 Nov 15;256(1):225–228. doi: 10.1042/bj2560225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson J. J., Taylor L., Ananthanarayanan V. S. Role of calcium in stabilizing the structure of hyalin, a major protein component of the sea urchin extraembryonic hyaline layer. Biochem Biophys Res Commun. 1988 Apr 29;152(2):830–836. doi: 10.1016/s0006-291x(88)80113-x. [DOI] [PubMed] [Google Scholar]
- Stephens R. E., Kane R. E. Some properties of hyalin: the calcium-insoluble protein of the hyaline layer of the sea urchin egg. J Cell Biol. 1970 Mar;44(3):611–617. doi: 10.1083/jcb.44.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessel G. M., McClay D. R. Gastrulation in the sea urchin embryo requires the deposition of crosslinked collagen within the extracellular matrix. Dev Biol. 1987 May;121(1):149–165. doi: 10.1016/0012-1606(87)90148-5. [DOI] [PubMed] [Google Scholar]
